On the inviscid Proudman-Johnson equation

By Adrian Constantin and Marcus Wunsch
Universität Wien, Fakultät für Mathematik, Nordbergstraße 15, A-1090 Wien, Austria

(Communicated by Masaki KAShiwara, M.J.A., June 12, 2009)

Abstract

We show that certain qualitative properties of classical solutions to the inviscid Proudman-Johnson equation are preserved as long as these solutions exist. This enables us to give a simple blow-up criterion.

Key words: Proudman-Johnson equation; blow-up.

1. Introduction. The inviscid ProudmanJohnson equation [12]

$$
\left\{\begin{array}{l}
f_{t x x}+f f_{x x x}=f_{x} f_{x x} \tag{1.1}\\
f(0, x)=f^{0}(x)
\end{array}\right.
$$

is obtained from the incompressible Euler equations in two space dimensions,

$$
\left\{\begin{array}{l}
\mathbf{u}_{t}+(\mathbf{u} \cdot \nabla) \mathbf{u}=-\frac{1}{\rho} \nabla p \tag{1.2}\\
\operatorname{div} \mathbf{u}=0
\end{array}\right.
$$

by the separation of space variables for the stream function

$$
\begin{equation*}
\psi(t, x, y)=y f(t, x) \tag{1.3}
\end{equation*}
$$

giving the velocity vector

$$
\mathbf{u}=\left(\psi_{y},-\psi_{x}\right)
$$

A major open problem in partial differential equations is the blow-up problem for the incompressible Euler equation [1, 9]: can singularities arise in finite time from smooth initial velocities? The physical importance of this problem is far greater than the blowup problem for the Navier-Stokes equation, despite the prominence of the latter as a Clay Millenium Problem [7]. Due to the fact that equation (1.1) describes solutions to the incompressible Euler equations, the blow-up issue for (1.1) with spatially periodic solutions satisfying
(1.4) $\quad f(t, 0)=f(t, 1) \quad$ and $\quad f_{x}(t, 0)=f_{x}(t, 1)$ at instant t, is an open problem of great current interest. In this context notice that if instead of the incompressible Euler equations (1.2) we consider the

2000 Mathematics Subject Classification. Primary 35Q35; Secondary 76B99.
incompressible Navier-Stokes equations

$$
\left\{\begin{array}{l}
\mathbf{u}_{t}+(\mathbf{u} \cdot \nabla) \mathbf{u}=-\frac{1}{\rho} \nabla p+\nu \Delta \mathbf{u} \\
\operatorname{div} \mathbf{u}=0
\end{array}\right.
$$

where $\nu>0$ is the constant viscosity, the Ansatz (1.3) yields the viscid Proudman-Johnson equation

$$
f_{t x x}+f f_{x x x}-\nu f_{x x x x}=f_{x} f_{x x}
$$

lacking blow-up solutions (see [3]).
The classical Beale-Kato-Majda [2, 8] blow-up criterion for (1.2), says that the time integral of the maximum magnitude of the vorticity

$$
\int_{0}^{T} \sup _{x, y}|\Delta \psi(t, x, y)| d t
$$

controls blow-up or its absence. However, (1.3) yields a vorticity

$$
\begin{equation*}
-\Delta \psi(t, x, y)=-y f_{x x}(t, x) \tag{1.5}
\end{equation*}
$$

of infinite supremum norm for $(x, y) \in[0,1] \times \mathbf{R}$, unless we are in the uninteresting case $f_{x x} \equiv 0$.

Our aim is to introduce a class of smooth functions that is preserved by the flow (1.1) and for which a simple blow-up criterion can be given.
2. Blow-up scenario. For integers $s \geq 1$ we denote by H^{s} the Sobolev space of square-integrable functions $F:[0,1] \rightarrow \mathbf{R}$ with square-integrable distributional derivatives up to order s. Okamoto [10] proved local existence in time of solutions to (1.1):

Theorem 2.1. For any $f_{x}^{0} \in H^{s}(s \geq 1)$ satisfying (1.4) at time $t=0$, there exists $T>0$ and a unique solution $f_{x} \in \mathcal{C}\left([0, T] ; H^{s}\right)$ of (1.1) satisfying (1.4) for all $t \in[0, T]$, with initial data $f(0, \cdot)=f^{0}$.

Using (1.1) we see that if $f_{x}^{0} \in H^{s}$ with $s \geq 2$, then the solution $f_{x} \in \mathcal{C}^{1}\left([0, T] ; H^{s-1}\right)$. Notice that the invariance of (1.1) under the transformation
$f(t, x) \mapsto-f(t,-x)$ in combination with the above result shows that odd initial data f^{0}, satisfying

$$
f^{0}(x)=-f^{0}(-x), \quad x \in \mathbf{R}
$$

remain spatially odd for as long as they exist.
Particular weak solutions to (1.1) that blow up in finite time have been found and investigated in Childress et al. [4] and Okamoto [10], but no smooth blow-up solutions could be given so far in the literature. Global existence for classical solutions to (1.2), captured in our framework if $s \geq 2$, is ensured as long as

$$
\int_{0}^{1} f_{x x}^{2}(t, x) d x
$$

does not blow-up [10]. While this criterion involves the vorticity (1.5), being thus reminiscent of the classical Beale-Kato-Majda blow-up criterion for (1.2), it is possible to give a simpler criterion for odd data. To this end, let us define

$$
\begin{equation*}
M(t):=\sup _{x \in[0,1]}\left\{f_{x}(t, x)\right\} \tag{2.1}
\end{equation*}
$$

Proposition 2.2. If the initial data $f^{0} \in H^{3}$ is odd, then the corresponding solution to (1.1) blows up in finite time if and only if $\lim \sup _{t \uparrow T^{*}} M(t)=\infty$ for some $T^{*}<\infty$.

Proof. Multiplying (1.1) by $f_{x x}$, an integration by parts shows that

$$
\frac{d}{d t} \int_{0}^{1} f_{x x}^{2} d x=3 \int_{0}^{1} f_{x} f_{x x}^{2} d x \leq 3 M(t) \int_{0}^{1} f_{x x}^{2} d x
$$

Gronwall's inequality [9] shows now that a bound on $M(t)$ provides us with a bound on $\int_{0}^{1} f_{x x}^{2} d x$.

Let us now introduce the class \mathcal{F} of odd functions $f \in H^{3}$ with

$$
\begin{equation*}
\sup _{x \in[0,1]}\left\{f_{x}(x)\right\}=f_{x}(0) \tag{2.2}
\end{equation*}
$$

For initial data $f^{0} \in \mathcal{F}$ the above blow-up criterion simplifies. To show this we will use an abstract lemma by Constantin and Escher [5, 6]:

Lemma 2.3. For $f_{x} \in \mathcal{C}^{1}\left([0, T] ; H^{1}\right)$ define the function M by (2.1). Then for every $t \in[0, T]$, there exists at least one point $\xi(t) \in[0,1]$ with $M(t)=f_{x}(t, \xi(t))$, and the function M is almost everywhere differentiable on $(0, T)$ with

$$
M^{\prime}(t)=f_{x t}(t, \xi(t)) \quad \text { a.e. on }(0, T)
$$

With this lemma at hand, we can give a blow-up criterion for solutions to (1.1).

Theorem 2.4. If the initial data $f^{0} \in \mathcal{F}$, then the corresponding solution to (1.1) blows up in finite time if and only if $\lim \sup _{t \uparrow T^{*}} f_{x}(t, 0)=\infty$ for some $T^{*}<\infty$.

Proof. Integrating (1.1) once with respect to the spatial variable, we obtain

$$
\partial_{x}\left(f_{t x}+f f_{x x}-f_{x}^{2}\right)=0
$$

Using (1.4) we get

$$
\begin{equation*}
f_{t x}+f f_{x x}=f_{x}^{2}-2 \int_{0}^{1} f_{x}^{2} d x \tag{2.3}
\end{equation*}
$$

which, by Lemma 2.3, entails the ordinary differential equation

$$
\begin{equation*}
M^{\prime}(t)=M^{2}(t)-2 \int_{0}^{1} f_{x}^{2} d x \quad \text { a.e. } \tag{2.4}
\end{equation*}
$$

Since f is odd and $f_{x}^{0}(0)=M(0)$ as $f^{0} \in \mathcal{F}$, denoting

$$
c(t)=\int_{0}^{1} f_{x}^{2} d x
$$

we see that both functions $M(t)$ and $f_{x}(t, 0)$ satisfy the ordinary differential equation $z^{\prime}(t)=z^{2}(t)-2 c(t)$ with identical initial data. Thus $M(t)=f_{x}(t, 0)$ for all times and we conclude by Proposition 2.2.

We now introduce an interesting subfamily \mathcal{F}^{*} of \mathcal{F} by considering odd functions $f \in H^{3}$ such that f is convex on $(-1 / 2,0)$ and concave on $(0,1 / 2)$. Notice that if $f \in \mathcal{F}^{*}$ then $\int_{-1 / 2}^{1 / 2} f_{x} d x=0$, and f_{x} is even and monotone on $(-1 / 2,0)$ and on $(0,1 / 2)$. We now show the relevance of \mathcal{F}^{*} to (1.1).

Proposition 2.5. If $f^{0} \in \mathcal{F}^{*}$, then $f \in \mathcal{F}^{*}$ as long as the solution exists.

Proof. Let $T^{*}>0$ be the maximal existence time of the solution to (1.1) with initial data f^{0}. For $t \in\left[0, T^{*}\right)$ we define the diffeomorphism $\varphi(t, \cdot)$ of $[-1 / 2,1,2]$ as the solution to the system

$$
\left\{\begin{array}{l}
\varphi_{t}=f(t, \varphi) \tag{2.5}\\
\varphi(0, x)=x
\end{array}\right.
$$

Since $f(t, 0)=f(t, \pm 1 / 2)=0$ as f is odd and satisfies (1.4), by uniqueness for the ordinary differential equation $z^{\prime}=f(t, z)$ with initial data $z(0)=0$, respectively $z(0)= \pm 1 / 2$ we infer from (2.5) that

$$
\begin{equation*}
\varphi(t, 0)=0, \varphi(t, \pm 1 / 2)= \pm 1 / 2 \tag{2.6}
\end{equation*}
$$

for all $t \in\left[0, T^{*}\right)$. Define now

$$
\theta(t, x)=f_{x x}(t, \varphi(t, x))
$$

for $(t, x) \in\left[0, T^{*}\right) \times[-1 / 2,1 / 2]$. Using (2.5), we infer from (1.1) that $\theta_{t}=f_{x}(t, \varphi) \theta$. Thus

$$
f_{x x}(t, \varphi(t, x))=f_{x x}(0, x) e^{\int_{0}^{t} f_{x}(s, \varphi(s, x)) d s}
$$

for all $(t, x) \in\left[0, T^{*}\right) \times[-1 / 2,1 / 2]$. Since $f^{0} \in \mathcal{F}$, the last relation in combination with (2.6) shows that for any $t \in\left(0, T^{*}\right)$ the function $f(t, \cdot)$ is convex on $(-1 / 2,0)$ and concave on $(0,1 / 2)$. We already know that $f(t, \cdot)$ has to be odd. Thus $f(t, \cdot) \in \mathcal{F}^{*}$.

It is of interest to point out that (2.3) can be written as

$$
\begin{equation*}
\partial_{x}\left(f_{t}+f f_{x}-2 \int_{0}^{x} f_{x}^{2} d x+2 x c(t)\right)=0 \tag{2.7}
\end{equation*}
$$

If $f^{0} \in H^{3}$ is odd, $f(t, \cdot)$ is also odd so that $f_{t}(t, 0)=$ $f(t, 0)=0$. Evaluating the differentiated expression in (2.7) at $x=0$, we infer that for $f^{0} \in H^{3}$ odd,

$$
\begin{equation*}
f_{t}+f f_{x}=2 \int_{0}^{x} f_{x}^{2} d x-2 x \int_{0}^{1} f_{x}^{2} d x \tag{2.8}
\end{equation*}
$$

Seeking separable solutions of (2.8) of the form

$$
f(t, x)=\frac{F(x)}{T-t}
$$

with $T>0$ fixed, amounts to solving the timeindependent equation

$$
F+F F_{x}=2 \int_{0}^{x} F_{x}^{2} d x-2 x \int_{0}^{1} F_{x}^{2} d x
$$

and leads to the blow-up solutions from $[4,10]$.
Remark 2.6. Similarly one can consider the generalized Proudman-Johnson equation introduced in $[10,11]$. Results of this type will be exhibited in a forthcoming paper.

Acknowledgements. The authors are grateful to the referee for suggestions concerning the presentation. MW acknowledges financial support pro-
vided by the Austrian Science Fund (FWF) through the Wissenschaftskolleg Differenzialgleichungen.

References

[1] K. Bardos and È. S. Titi, Uspekhi Mat. Nauk 62 (2007), no. 3 (375), 5-46, translation in Russian Math. Surveys 62 (2007), no. 3, 409-451.
[2] J. T. Beale, T. Kato and A. Majda, Remarks on the breakdown of smooth solutions for the 3-D Euler equations, Comm. Math. Phys. 94 (1984), no. 1, 61-66.
[3] X. Chen and H. Okamoto, Global existence of solutions to the Proudman-Johnson equation, Proc. Japan Acad. Ser. A Math. Sci. 76 (2000), no. 9, 149-152.
[4] S. Childress et al., Blow-up of unsteady two-dimensional Euler and Navier-Stokes solutions having stagnation-point form, J. Fluid Mech. 203 (1989), 1-22.
[5] A. Constantin and J. Escher, Wave breaking for nonlinear nonlocal shallow water equations, Acta Math. 181 (1998), no. 2, 229-243.
[6] A. Constantin and J. Escher, Global solutions for quasilinear parabolic problems, J. Evol. Equ. 2 (2002), no. 1, 97-111.
[7] P. Constantin, On the Euler equations of incompressible fluids, Bull. Amer. Math. Soc. (N.S.) 44 (2007), no. 4, 603-621. (electronic).
[8] H. Kozono and Y. Taniuchi, Limiting case of the Sobolev inequality in BMO, with application to the Euler equations, Comm. Math. Phys. 214 (2000), no. 1, 191-200.
[9] A. Majda and A. Bertozzi, Vorticity and incompressible flow, Cambridge University Press, Cambridge, 2002.
[10] H. Okamoto, Well-posedness of the generalized Proudman-Johnson equation without viscosity, J. Math. Fluid Mech. 11 (2009), 46-59.
[11] H. Okamoto and J. Zhu, Some similarity solutions of the Navier-Stokes equations and related topics, Proceedings of 1999 International Conference on Nonlinear Analysis (Taipei), Taiwanese J. Math. 4 (2000), no. 1, 65-103.
[12] I. Proudman and K. Johnson, Boundary-layer growth near a rear stagnation point, J. Fluid Mech. 12 (1962), 161-168.

