## Inequalities of Ono numbers and class numbers associated to imaginary quadratic fields

By Kenichi SHIMIZU

Kenmei Girls' Junior and Senior High School, 68, Honmachi, Himeji, Hyogo 670-0012, Japan

(Communicated by Shigefumi MORI, M.J.A., March 12, 2009)

**Abstract:** We denote by  $h_D$  the class number and by  $p_D$  the Ono number of the imaginary quadratic fields  $\mathbf{Q}(\sqrt{-D})$ . Sairaiji-Shimizu [2] showed that there are infinitely many imaginary quadratic fields such that the inequality  $h_D > c^{p_D}$  holds for any real number. On the other hand we have the possibility that  $h_D \leq c^{p_D}$  holds for infinitely many imaginary quadratic fields for the same real number c. In this paper, given a real number c, we consider whether  $h_D \leq c^{p_D}$  holds for infinitely many imaginary quadratic fields or not.

Key words: Ono number; class number.

**1. Introduction.** Given a square-free integer d > 0, we define D by

$$D := \begin{cases} 4d & \text{if } d \equiv 1,2 \pmod{4} \\ d & \text{if } d \equiv 3 \pmod{4}, \end{cases}$$

and call -D the discriminant of the imaginary quadratic field  $K_D = \mathbf{Q}(\sqrt{-D})$ . We denote by  $h_D$ the class number of  $K_D$ . Let  $\nu(n)$  be the number of (not necessarily different) prime factors of an integer n, then we define the Ono number  $p_D$  as follows:

$$p_D := \begin{cases} \max\{\nu(f_D(x)) \mid x \text{ are integers} \\ \text{in the interval } 0 \leq x \leq D/4 - 1\} \\ \text{if } d \neq 1, 3 \\ 1 & \text{if } d = 1, 3, \end{cases}$$

where we define  $f_D(x)$  by

$$f_D(x) := \begin{cases} x^2 + d & \text{if } d \equiv 1,2 \pmod{4} \\ x^2 + x + (1+d)/4 & \text{if } d \equiv 3 \pmod{4} \end{cases}$$

A motivation of this study was raised by the inequality

$$h_D \leq 2^{p_D}$$

which conjectured by T. Ono [1]. Sairaiji-Shimizu [2] showed that the inequality  $h_D \leq 2^{p_D}$  does not hold for all D, by giving infinite many imaginary quadratic fields such that  $h_D > c^{p_D}$  holds for any real number. Further in [3] we also showed that  $h_D \leq 2^{p_D}$  holds for all D if  $D \equiv 7 \pmod{8}$ .

We consider the supremum  $c_0$  of real numbers csuch that the inequality  $h_D \leq c^{p_D}$  holds for only finitely many D. At first we show:

**Proposition 2.1.** There is a constant  $c_0$  which satisfies the following conditions (1) and (2). (1) If  $c < c_0$ , then there are finitely many D such that  $h_D \leq c^{p_D}$ .

(2) If  $c > c_0$ , then there are infinitely many D such that  $h_D \leq c^{p_D}$ .

We want to calculate the constant  $c_0$ , but we can not do now. In this paper, we show the following theorems.

**Theorem 2.4.** The inequality  $c_0 \leq \sqrt{2}$  holds. **Theorem 3.3.** The inequality  $\sqrt[4]{2} \leq c_0$  holds. In Section 2 we discuss an upper bound for  $c_0$ and we give the Proof of Theorem 2.4. In Section 3 we discuss a lower bound for  $c_0$  and we give the

**2.** An upper bound for  $c_0$ . At first we consider the existence of the following real number  $c_0$ .

Proof of Theorem 3.3.

**Proposition 2.1.** There is a constant  $c_0$  which satisfies the following conditions (1) and (2). (1) If  $c < c_0$ , then there are finitely many D such that  $h_D \leq c^{p_D}$ .

(2) If  $c > c_0$ , then there are infinitely many D such that  $h_D \leq c^{p_D}$ .

Proof. Put  $S := \{c \mid h_D \leq c^{p_D} \text{ holds for finitely} \text{ many } D\}$ . Since there are only finitely many D such that  $h_D = 1$ , we have  $1 \in S$ . Since in [3] we have the fact that  $h_D \leq 2^{p_D}$  holds for infinitely many D, we see that  $S \subset [1, 2)$ . Thus there exists the supremum  $c_0$  of S, and we have the assertion.

<sup>2000</sup> Mathematics Subject Classification. Primary 11R11; Secondary 11R29.

For giving an upper bound for  $c_0$ , we show Propositions 2.2 and 2.3.

**Proposition 2.2.** For real numbers  $\ell$ , m, a > 1 and k > 0, if there are infinitely many D such that  $p_D > k \log_a(\ell D + m)$ , then the inequality  $c_0 \leq \sqrt[3]{a}$  holds.

*Proof.* Siegel [4] showed that the inequality  $h_D < (3/\pi)\sqrt{D}\log D$  holds for all D. By this inequality and the assumption of this proposition, there are infinitely many D such that

$$\frac{p_D}{\log h_D} > \frac{k \log_a(\ell D + m)}{\log((3/\pi)\sqrt{D}\log D)}$$

that is,

$$\frac{p_D \log a}{\log h_D} > \frac{k \log(\ell D + m)}{\log((3/\pi)\sqrt{D} \log D)}.$$

Putting

$$\phi(D) = \frac{k \log(\ell D + m)}{\log((3/\pi)\sqrt{D}\log D)}$$

we have

$$\phi(D) = \frac{k \log(\ell D + m)}{\log(3/\pi) + (1/2) \log D + \log \log D}$$
$$= \frac{k \log(\ell D + m) / \log D}{\log(3/\pi) / \log D + 1/2 + \log \log D / \log D}$$

Since

$$\lim_{D \to \infty} \log(\ell D + m) / \log D = 1$$
$$\lim_{D \to \infty} \log(3/\pi) / \log D = 0,$$

and

$$\lim_{D \to \infty} \log \log D / \log D = 0,$$

we have

$$\lim_{D \to \infty} \phi(D) = 2k.$$

For any  $\eta$  such that  $0 < \eta < 2k$ , there are infinitely many D such that

$$\frac{p_D \log a}{\log h_D} \ge 2k - \eta.$$

This inequality implies

$$\frac{p_D \log a}{2k - \eta} \ge \log h_D,$$

and consequently

$$h_D \leq a^{\frac{p_D}{2k-\eta}},$$

that is, there are infinitely many D such that

$$h_D \leq a^{\frac{p_D}{2k-\eta}}.$$

Hence, for  $\varepsilon = \varepsilon(\eta) > 0$  there are infinitely many D such that  $h_D \leq a^{(\frac{1}{2k} + \varepsilon)p_D}$ .

Let  $c(\varepsilon) = a^{\frac{1}{2k}+\varepsilon}$ , then it holds that  $\sqrt[2^k]{a} < c(\varepsilon)$ and  $h_D \leq c(\varepsilon)^{p_D}$  for infinitely many D.

Thus given a real number  $c > \sqrt[2k]{a}$ , then there is a positive number  $\varepsilon$  such that  $\sqrt[2k]{a} < c(\varepsilon) \leq c$ , and it holds  $h_D \leq c(\varepsilon)^{p_D} \leq c^{p_D}$  for infinitely many D. Hence we get

$$c_0 \leq \sqrt[2k]{a}.$$

**Proposition 2.3.** There are infinitely many D such that  $p_D > \log_2(D/4 - 1)$ .

*Proof.* By Sairaiji-Shimizu [3], we have the inequality  $p_D > \log_{q_D}(D/4 - 1)$  for D > 4. If  $d \equiv 7 \pmod{8}$ , then  $q_D = 2$ . Hence there are infinitely many D such that  $p_D > \log_2(D/4 - 1)$ .

By Propositions 2.2 and 2.3, we immediately obtain the following theorem.

**Theorem 2.4.** The inequality  $c_0 \leq \sqrt{2}$  holds.

**3.** A lower bound for  $c_0$ . For giving a lower bound for  $c_0$ , we show Propositions 3.1 and 3.2.

**Proposition 3.1.** For real numbers  $\ell$ , m, a > 1 and k > 0, if there exists a constant  $D_1$  such that  $p_D < k \log_a(\ell D + m)$  for all  $D > D_1$ , then  $\sqrt[2k]{a} \leq c_0$ .

*Proof.* Siegel [4] showed the following formula related to class numbers, that is,

$$\lim_{n \to \infty} \frac{\log h_D}{\log \sqrt{D}} = 1.$$

For any  $\varepsilon > 0$ , there exists a constant  $D_2$  depending on  $\varepsilon$  such that the inequality

$$1 - \varepsilon < \frac{\log h_D}{\log \sqrt{D}}$$

holds for all  $D > D_2$ . From this, we have

$$\frac{1-\varepsilon}{2}\log D < \log h_D.$$

By this inequality and the assumption of this proposition, for all  $D > \max\{D_1, D_2\}$  we have

$$\frac{p_D}{\log h_D} < \frac{k \log_a(\ell D + m)}{\frac{1 - \varepsilon}{2} \log D}$$

Since

$$\lim_{D \to \infty} \log(\ell D + m) / \log D = 1,$$

we obtain

$$\lim_{D \to \infty} \frac{1}{\log a^{\frac{1-\varepsilon}{2k}}} \cdot \frac{\log(\ell D + m)}{\log D} = \frac{1}{\log a^{\frac{1-\varepsilon}{2k}}}$$

Hence for any  $\eta > 0$  there is a constant  $D_3$  depending on  $\eta$ , we get

$$\frac{1}{\log a^{\frac{1-\varepsilon}{2k}-\eta}} > \frac{p_D}{\log h_D}$$

for all  $D > \max\{D_1, D_2, D_3\}$ , that is,

$$p_D \log a^{\frac{1-\varepsilon}{2k}-\eta} < \log h_D.$$

Therefore we get

$$a^{(\frac{1-\varepsilon}{2k}-\eta)p_D} < h_D,$$

and consequently

$$a^{(\frac{1}{2k} - \frac{\varepsilon}{2k} - \eta)p_D} < h_D.$$

Let  $c(\varepsilon,\eta) = a^{\frac{1}{2k} - \frac{\varepsilon}{2k} - \eta}$ , then we have  $c(\varepsilon,\eta) < \sqrt[2k]{a}$ and  $c(\varepsilon,\eta)^{p_D} < h_D$  for all  $D > \max\{D_1, D_2, D_3\}$ . Hence there are only finitely many D such that  $h_D \leq c(\varepsilon,\eta)^{p_D}$ . **Proposition 3.2** (Sairaiji-Shimizu [3]). The inequality  $p_D < 2 \log_2 D$  holds for all D.

By Propositions 3.1 and 3.2, we immediately obtain the following theorem.

**Theorem 3.3.** The inequality  $\sqrt[4]{2} \leq c_0$  holds. From Theorems 2.4 and 3.3 we have showed that the inequality  $\sqrt[4]{2} \leq c_0 \leq \sqrt{2}$  holds. We want to obtain sharper lower bounds and upper bounds for  $c_0$ , and determine the value  $c_0$  itself. Furthermore we wonder whether  $c_0$  is an algebraic number or a transcendental number, and whether the inequality  $h_D \leq c_0^{p_D}$  holds for infinitely many D or not.

## References

- T. Ono, Arithmetic of algebraic groups and its applications, St. Paul's International Exchange Series Occasional Papers, VI, St. Paul's University, Tokyo, 1986.
- F. Sairaiji and K. Shimizu, A note on Ono's numbers associated to imaginary quadratic fields, Proc. Japan Acad. Ser. A Math. Sci. 77 (2001), no. 2, 29–31.
- [3] F. Sairaiji and K. Shimizu, An inequality between class numbers and Ono's numbers associated to imaginary quadratic fields, Proc. Japan Acad. Ser. A Math. Sci. 78 (2002), no. 7, 105–108.
- [4] C. L. Siegel, Über die Classenzahl quadratischer Zahlkörper, Acta Arith. 1 (1935), 83–86.