Inequalities of Ono numbers and class numbers associated to imaginary quadratic fields

By Kenichi Shimizu
Kenmei Girls' Junior and Senior High School, 68, Honmachi, Himeji, Hyogo 670-0012, Japan

(Communicated by Shigefumi Mori, M.J.A., March 12, 2009)

Abstract

We denote by h_{D} the class number and by p_{D} the Ono number of the imaginary quadratic fields $\mathbf{Q}(\sqrt{-D})$. Sairaiji-Shimizu [2] showed that there are infinitely many imaginary quadratic fields such that the inequality $h_{D}>c^{p_{D}}$ holds for any real number. On the other hand we have the possibility that $h_{D} \leqq c^{p_{D}}$ holds for infinitely many imaginary quadratic fields for the same real number c. In this paper, given a real number c, we consider whether $h_{D} \leqq c^{p_{D}}$ holds for infinitely many imaginary quadratic fields or not.

Key words: Ono number; class number.

1. Introduction. Given a square-free integer $d>0$, we define D by

$$
D:=\left\{\begin{array}{lll}
4 d & \text { if } d \equiv 1,2 & (\bmod 4) \\
d & \text { if } d \equiv 3 & (\bmod 4)
\end{array}\right.
$$

and call $-D$ the discriminant of the imaginary quadratic field $K_{D}=\mathbf{Q}(\sqrt{-D})$. We denote by h_{D} the class number of K_{D}. Let $\nu(n)$ be the number of (not necessarily different) prime factors of an integer n, then we define the Ono number p_{D} as follows:

$$
p_{D}:=\left\{\begin{array}{lr}
\max \left\{\nu\left(f_{D}(x)\right) \mid x\right. \text { are integers } \\
\text { in the interval } 0 \leqq x \leqq D / 4-1\} \\
& \text { if } d \neq 1,3 \\
1 & \text { if } d=1,3,
\end{array}\right.
$$

where we define $f_{D}(x)$ by

$$
f_{D}(x):= \begin{cases}x^{2}+d & \text { if } d \equiv 1,2(\bmod 4) \\ x^{2}+x+(1+d) / 4 & \text { if } d \equiv 3 \quad(\bmod 4) .\end{cases}
$$

A motivation of this study was raised by the inequality

$$
h_{D} \leqq 2^{p_{D}}
$$

which conjectured by T. Ono [1]. Sairaiji-Shimizu [2] showed that the inequality $h_{D} \leqq 2^{p_{D}}$ does not hold for all D, by giving infinite many imaginary quadratic fields such that $h_{D}>c^{p_{D}}$ holds for any real number. Further in [3] we also showed that $h_{D} \leqq 2^{p_{D}}$ holds for all D if $D \equiv 7(\bmod 8)$.

[^0]We consider the supremum c_{0} of real numbers c such that the inequality $h_{D} \leqq c^{p_{D}}$ holds for only finitely many D. At first we show:

Proposition 2.1. There is a constant c_{0} which satisfies the following conditions (1) and (2).
(1) If $c<c_{0}$, then there are finitely many D such that $h_{D} \leqq c^{p_{D}}$.
(2) If $c>c_{0}$, then there are infinitely many D such that $h_{D} \leqq c^{p_{D}}$.

We want to calculate the constant c_{0}, but we can not do now. In this paper, we show the following theorems.

Theorem 2.4. The inequality $c_{0} \leqq \sqrt{2}$ holds.
Theorem 3.3. The inequality $\sqrt[4]{2} \leqq c_{0}$ holds.
In Section 2 we discuss an upper bound for c_{0} and we give the Proof of Theorem 2.4. In Section 3 we discuss a lower bound for c_{0} and we give the Proof of Theorem 3.3.
2. An upper bound for \boldsymbol{c}_{0}. At first we consider the existence of the following real number c_{0}.

Proposition 2.1. There is a constant c_{0} which satisfies the following conditions (1) and (2).
(1) If $c<c_{0}$, then there are finitely many D such that $h_{D} \leqq c^{p_{D}}$.
(2) If $c>c_{0}$, then there are infinitely many D such that $h_{D} \leqq c^{p_{D}}$.

Proof. Put $S:=\left\{c \mid h_{D} \leqq c^{p_{D}}\right.$ holds for finitely many $D\}$. Since there are only finitely many D such that $h_{D}=1$, we have $1 \in S$. Since in [3] we have the fact that $h_{D} \leqq 2^{p_{D}}$ holds for infinitely many D, we see that $S \subset[1,2)$. Thus there exists the supremum c_{0} of S, and we have the assertion.

For giving an upper bound for c_{0}, we show Propositions 2.2 and 2.3.

Proposition 2.2. For real numbers ℓ, m, $a>1$ and $k>0$, if there are infinitely many D such that $p_{D}>k \log _{a}(\ell D+m)$, then the inequality $c_{0} \leqq$ $\sqrt[2 k]{a}$ holds.

Proof. Siegel [4] showed that the inequality $h_{D}<(3 / \pi) \sqrt{D} \log D$ holds for all D. By this inequality and the assumption of this proposition, there are infinitely many D such that

$$
\frac{p_{D}}{\log h_{D}}>\frac{k \log _{a}(\ell D+m)}{\log ((3 / \pi) \sqrt{D} \log D)}
$$

that is,

$$
\frac{p_{D} \log a}{\log h_{D}}>\frac{k \log (\ell D+m)}{\log ((3 / \pi) \sqrt{D} \log D)}
$$

Putting

$$
\phi(D)=\frac{k \log (\ell D+m)}{\log ((3 / \pi) \sqrt{D} \log D)}
$$

we have

$$
\begin{aligned}
\phi(D) & =\frac{k \log (\ell D+m)}{\log (3 / \pi)+(1 / 2) \log D+\log \log D} \\
& =\frac{k \log (\ell D+m) / \log D}{\log (3 / \pi) / \log D+1 / 2+\log \log D / \log D}
\end{aligned}
$$

Since

$$
\begin{gathered}
\lim _{D \rightarrow \infty} \log (\ell D+m) / \log D=1 \\
\lim _{D \rightarrow \infty} \log (3 / \pi) / \log D=0
\end{gathered}
$$

and

$$
\lim _{D \rightarrow \infty} \log \log D / \log D=0
$$

we have

$$
\lim _{D \rightarrow \infty} \phi(D)=2 k
$$

For any η such that $0<\eta<2 k$, there are infinitely many D such that

$$
\frac{p_{D} \log a}{\log h_{D}} \geqq 2 k-\eta
$$

This inequality implies

$$
\frac{p_{D} \log a}{2 k-\eta} \geqq \log h_{D}
$$

and consequently

$$
h_{D} \leqq a^{\frac{p_{D}}{2 k-\eta}}
$$

that is, there are infinitely many D such that

$$
h_{D} \leqq a^{\frac{p_{D}}{2 k-\eta}} .
$$

Hence, for $\varepsilon=\varepsilon(\eta)>0$ there are infinitely many D such that $h_{D} \leqq a^{\left(\frac{1}{2 k}+\varepsilon\right) p_{D}}$.

Let $c(\varepsilon)=a^{\frac{1}{2 k}+\varepsilon}$, then it holds that $\sqrt[2 k]{a}<c(\varepsilon)$ and $h_{D} \leqq c(\varepsilon)^{p_{D}}$ for infinitely many D.

Thus given a real number $c>\sqrt[2 k]{a}$, then there is a positive number ε such that $\sqrt[2 k]{a}<c(\varepsilon) \leqq c$, and it holds $h_{D} \leqq c(\varepsilon)^{p_{D}} \leqq c^{p_{D}}$ for infinitely many D. Hence we get

$$
c_{0} \leqq \sqrt[2 k]{a}
$$

Proposition 2.3. There are infinitely many D such that $p_{D}>\log _{2}(D / 4-1)$.

Proof. By Sairaiji-Shimizu [3], we have the inequality $p_{D}>\log _{q_{D}}(D / 4-1)$ for $D>4$. If $d \equiv 7(\bmod 8)$, then $q_{D}=2$. Hence there are infinitely many D such that $p_{D}>\log _{2}(D / 4-1)$.

By Propositions 2.2 and 2.3 , we immediately obtain the following theorem.

Theorem 2.4. The inequality $c_{0} \leqq \sqrt{2}$ holds.
3. A lower bound for $\boldsymbol{c}_{\boldsymbol{0}}$. For giving a lower bound for c_{0}, we show Propositions 3.1 and 3.2.

Proposition 3.1. For real numbers ℓ, m, $a>1$ and $k>0$, if there exists a constant D_{1} such that $p_{D}<k \log _{a}(\ell D+m)$ for all $D>D_{1}$, then $\sqrt[2 k]{a} \leqq$ c_{0}.

Proof. Siegel [4] showed the following formula related to class numbers, that is,

$$
\lim _{n \rightarrow \infty} \frac{\log h_{D}}{\log \sqrt{D}}=1
$$

For any $\varepsilon>0$, there exists a constant D_{2} depending on ε such that the inequality

$$
1-\varepsilon<\frac{\log h_{D}}{\log \sqrt{D}}
$$

holds for all $D>D_{2}$. From this, we have

$$
\frac{1-\varepsilon}{2} \log D<\log h_{D}
$$

By this inequality and the assumption of this proposition, for all $D>\max \left\{D_{1}, D_{2}\right\}$ we have

$$
\frac{p_{D}}{\log h_{D}}<\frac{k \log _{a}(\ell D+m)}{\frac{1-\varepsilon}{2} \log D}
$$

$$
\begin{aligned}
& =\frac{2 k}{(1-\varepsilon) \log a} \cdot \frac{\log (\ell D+m)}{\log D} \\
& =\frac{1}{\log a^{\frac{1-\varepsilon}{2 k}}} \cdot \frac{\log (\ell D+m)}{\log D} .
\end{aligned}
$$

Since

$$
\lim _{D \rightarrow \infty} \log (\ell D+m) / \log D=1
$$

we obtain

$$
\lim _{D \rightarrow \infty} \frac{1}{\log a^{\frac{1-\varepsilon}{2 k}}} \cdot \frac{\log (\ell D+m)}{\log D}=\frac{1}{\log a^{\frac{1-\varepsilon}{2 k}}} .
$$

Hence for any $\eta>0$ there is a constant D_{3} depending on η, we get

$$
\frac{1}{\log a^{\frac{1-\varepsilon}{2 k}-\eta}}>\frac{p_{D}}{\log h_{D}}
$$

for all $D>\max \left\{D_{1}, D_{2}, D_{3}\right\}$, that is,

$$
p_{D} \log a^{\frac{1-\varepsilon}{2 k}-\eta}<\log h_{D}
$$

Therefore we get

$$
a^{\left(\frac{1-\varepsilon}{2 k}-\eta\right) p_{D}}<h_{D}
$$

and consequently

$$
a^{\left(\frac{1}{2 k}-\frac{\varepsilon}{2 k}-\eta\right) p_{D}}<h_{D} .
$$

Let $c(\varepsilon, \eta)=a^{\frac{1}{2 k}-\frac{\varepsilon}{2 k}-\eta}$, then we have $c(\varepsilon, \eta)<\sqrt[2 k]{a}$ and $c(\varepsilon, \eta)^{p_{D}}<h_{D}$ for all $D>\max \left\{D_{1}, D_{2}, D_{3}\right\}$. Hence there are only finitely many D such that $h_{D} \leqq c(\varepsilon, \eta)^{p_{D}}$.

Thus given a real number $c<\sqrt[2 k]{a}$, then there are positive numbers ε and η such that $c \leqq c(\varepsilon, \eta)<$ $\sqrt[2 k]{a}$, and it implies that $h_{D} \leqq c^{p_{D}}$ holds for finitely many D. Therefore we get $\sqrt[2 k]{a} \leqq c_{0}$.

Proposition 3.2 (Sairaiji-Shimizu [3]). The inequality $p_{D}<2 \log _{2} D$ holds for all D.

By Propositions 3.1 and 3.2, we immediately obtain the following theorem.

Theorem 3.3. The inequality $\sqrt[4]{2} \leqq c_{0}$ holds.
From Theorems 2.4 and 3.3 we have showed that the inequality $\sqrt[4]{2} \leqq c_{0} \leqq \sqrt{2}$ holds. We want to obtain sharper lower bounds and upper bounds for c_{0}, and determine the value c_{0} itself. Furthermore we wonder whether c_{0} is an algebraic number or a transcendental number, and whether the inequality $h_{D} \leqq c_{0}^{p_{D}}$ holds for infinitely many D or not.

References

[1] T. Ono, Arithmetic of algebraic groups and its applications, St. Paul's International Exchange Series Occasional Papers, VI, St. Paul's University, Tokyo, 1986.
[2] F. Sairaiji and K. Shimizu, A note on Ono's numbers associated to imaginary quadratic fields, Proc. Japan Acad. Ser. A Math. Sci. 77 (2001), no. 2, 29-31.
[3] F. Sairaiji and K. Shimizu, An inequality between class numbers and Ono's numbers associated to imaginary quadratic fields, Proc. Japan Acad. Ser. A Math. Sci. 78 (2002), no. 7, 105-108.
[4] C. L. Siegel, Über die Classenzahl quadratischer Zahlkörper, Acta Arith. 1 (1935), 83-86.

[^0]: 2000 Mathematics Subject Classification. Primary 11R11; Secondary 11R29.

