The ideal class group of the Z_{23}-extension over the rational field

By Kuniaki Horie* ${ }^{*}$ and Mitsuko Horie**),†)

(Communicated by Masaki KaShiwara, M.J.A., Nov. 12, 2009)

Abstract

Given any prime number l which is a primitive root modulo $529\left(=23^{2}\right)$, we shall prove that the l-class group of the \boldsymbol{Z}_{23}-extension over the rational field is trivial.

Key words: \boldsymbol{Z}_{23}-extension; ideal class group; Iwasawa theory.

Let p be any odd prime number. Let \boldsymbol{Z}_{p} denote the ring of p-adic integers, and \boldsymbol{B}_{∞} the \boldsymbol{Z}_{p}-extension over the rational field \boldsymbol{Q} (contained in the complex field). The p-class group of \boldsymbol{B}_{∞} is known to be trivial (cf. Iwasawa [5]). Let l be a prime number different from p. We have shown in [1-4], through arithmetic study of the analytic class number formula, that the l-class group of \boldsymbol{B}_{∞} is trivial if l is a primitive root modulo p^{2} and if

$$
p \leq 19 \quad \text { or } \quad l>\frac{3}{2}(p-1) \varphi(p-1) \log _{2}(p \log p)
$$

here φ denotes the Euler function and, for each real number $r>0, \log _{2} r=(\log r) / \log 2$ as usual. In this paper, we shall prove the following result by means of some results in $[1-3]$ with the help of a personal computer.

Theorem. If $p=23$ and l is a primitive root modulo 23^{2}, then the l-class group of \boldsymbol{B}_{∞} is trivial.

Remark. The condition that l is a primitive root modulo 23^{2} means that l is congruent modulo 23 to some integer in $\{5,7,10,11,14,15,17,19,20,21\}$ and is not congruent modulo 529 to any integer in $\{28,42,63,130,195,263,274,352,359,411\}$.

We have used Mathematica for our calculations by computer.

1. To begin with, we give lemmas helpful for the computations in the proof of our theorem. Let the notations p and l be as before, except that we assume $l>2$. For each integer $m \geq 0$, let \boldsymbol{B}_{m} denote the subfield of \boldsymbol{B}_{∞} with degree p^{m}, and h_{m} the class number of \boldsymbol{B}_{m}. Let n be any positive integer. Since

[^0]the prime ideal of \boldsymbol{B}_{n-1} dividing p is totally ramified in \boldsymbol{B}_{n}, class field theory shows that h_{n-1} divides h_{n}, i.e., h_{n} / h_{n-1} is an integer. The notation n, as well as p and l, will be used henceforth.

Now, let ν be the number of distinct prime divisors of $(p-1) / 2$, and let g_{1}, \ldots, g_{ν} be the primepowers >1 pairwise relatively prime such that

$$
\frac{p-1}{2}=g_{1} \cdots g_{\nu}
$$

Let V denote the subset of the cyclic group $\left\langle e^{2 \pi i /(p-1)}\right\rangle$ consisting of

$$
e^{\pi i m_{1} / g_{1}} \cdots e^{\pi i m_{\nu} / g_{\nu}}
$$

for all ν-tuples $\left(m_{1}, \ldots, m_{\nu}\right)$ of integers with $0 \leq m_{1}<g_{1}, \ldots, 0 \leq m_{\nu}<g_{\nu}$. It is naturally understood that $V=\{1\}$ if $p=3$. Let Φ denote the set of maps

$$
z: V \rightarrow\{0, \ldots, 2 l\}
$$

such that $l \nsucc z(\xi)$ for some $\xi \in V$ and $l \mid z\left(\xi^{\prime}\right)$ for all $\xi^{\prime} \in V \backslash\{\xi\}$. We put

$$
M=\max _{z \in \Phi} \mathfrak{N}\left(\sum_{\xi \in V} z(\xi) \xi-1\right)
$$

where \mathfrak{N} denotes the norm map from $\boldsymbol{Q}\left(e^{2 \pi i /(p-1)}\right)$ to \boldsymbol{Q}. We easily see that M is a positive integer.

Next, let \mathfrak{p} be a prime ideal of $\boldsymbol{Q}\left(e^{2 \pi i /(p-1)}\right)$ dividing p. Let I denote the set of positive integers $a<p^{n+1}$ for which $a \equiv \xi\left(\bmod \mathfrak{p}^{n+1}\right)$ with some $\xi \in V$. Since \mathfrak{p} is of degree 1 over \boldsymbol{Q} and since no pair $\left(\xi_{1}, \xi_{2}\right)$ of distinct elements of V satisfies $\xi_{1}-\xi_{2} \in \mathfrak{p}$, each $\xi \in V$ gives a unique $a \in I$ congruent to ξ modulo \mathfrak{p}^{n+1} and the map $\xi \mapsto a$ defines a bijection from V to I. We note that I contains 1 . Let \hat{I} denote the set of all maps from I to the $\operatorname{ring} \boldsymbol{Z}$ of (rational) integers, so that \hat{I} is regarded as a module in the usual manner. Let \mathfrak{F} denote the set of maps j in \hat{I} with $j(I) \subseteq\{0, l\}$ and, for each $a \in I$, let \mathfrak{F}_{a} denote the set of maps j in \hat{I} such that
$0<j(a)<l$ and that $j(b)=0$ or $j(b)=l$ for every $b \in I \backslash\{a\}$. Given any $m \in \boldsymbol{Z}$, we then define $\mathcal{P}_{a}(m)$ to be the set of $(j, y) \in \mathfrak{W}_{a} \times \mathfrak{F}$ satisfying

$$
\sum_{b \in I}\left(\left(p^{n}+1\right) j(b)+y(b)\right) b \equiv m \quad\left(\bmod p^{n+1}\right)
$$

further, we define $\mathcal{Q}_{a}(m)$ to be the set of $(j, y) \in$ $\mathfrak{F} \times \mathfrak{W}_{a}$ satisfying

$$
\sum_{b \in I}\left(\left(p^{n}+1\right) j(b)+y(b)\right) b \equiv m \quad\left(\bmod p^{n+1}\right)
$$

We also put

$$
\begin{aligned}
s(m)=\sum_{a \in I} & \left(\sum_{(j, y) \in \mathcal{Q}_{a}(m)}(-1)^{y(a)+\sum_{b \in I}(j(b)+y(b))} \overline{y(a)}\right. \\
& \left.-\sum_{(j, y) \in \mathcal{P}_{a}(m)}(-1)^{j(a)+\sum_{b \in I}(j(b)+y(b))} \widetilde{j(a)}\right)
\end{aligned}
$$

here, for each integer c relatively prime to l, \tilde{c} denotes the positive integer smaller than l such that $c \tilde{c} \equiv 1(\bmod l)$. For each $a \in I$, let \mathfrak{G}_{a} denote the set of maps f in \hat{I} satisfying

$$
f(a) \in\{1, \ldots, 2 l-1\} \backslash\{l\}, \quad f(I \backslash\{a\}) \subseteq\{0, l, 2 l\}
$$

Every pair (j, y) in $\left(\mathfrak{W}_{a} \times \mathfrak{F}\right) \cup\left(\mathfrak{F} \times \mathfrak{W}_{a}\right)$ then gives a $\operatorname{map} j+y$ in \mathfrak{H}_{a}. We put

$$
\mathcal{R}(m)=\bigcup_{a \in I}\left(\mathcal{P}_{a}(m) \cup \mathcal{Q}_{a}(m)\right)
$$

$$
\mathfrak{H}(m)=\left\{f \in \bigcup_{a \in I} \mathfrak{H}_{a} \mid \sum_{b \in I} f(b) b \equiv m\left(\bmod p^{n}\right)\right\}
$$

so that every (j, y) in $\mathcal{R}(m)$ satisfies $j+y \in \mathfrak{H}(m)$. We denote by ψ_{m} the map in \hat{I} such that $\psi_{m}(1)=$ m and that $\psi_{m}(a)=0$ for all a in $I \backslash\{1\}$. Obviously, $\psi_{m} \in \mathfrak{G}(m)$ when $m \in\{1, \ldots, 2 l-1\} \backslash\{l\}$. On the other hand, $\psi_{m}=0$ in \hat{I} when $m=0$.

Lemma 1. Let n_{0} be any positive integer, and u an integer in $\{1, \ldots, 2 l-1\} \backslash\{l\}$. Then the following statements are equivalent.
(i) $\mathfrak{H}(u)=\left\{\psi_{u}\right\}$ in the case $n=n_{0}$;
(ii) $\mathfrak{G}(u)=\left\{\psi_{u}\right\}$ whenever $n \geq n_{0}$.

Proof. This follows immediately from the definitions of I and $\mathfrak{H}(u)$.

Lemma 2. Let u be an integer in $\{1, \ldots$, $2 l-1\} \backslash\{l\}$ such that $p \nmid u$ or $p \nmid 2 l-u$ according to whether $u<l$ or $u>l$. Assume that $\mathfrak{G}(u)=\left\{\psi_{u}\right\}$. Then l does not divide $h_{n^{\prime}} / h_{n^{\prime}-1}$ for any integer $n^{\prime} \geq n$.

Proof. By Lemma 1, it suffices to prove that l
does not divide h_{n} / h_{n-1}. Let us first consider the case $u<l$. We take any (j, y) in $\mathcal{R}(u)$ and any $\left(j^{\prime}, y^{\prime}\right)$ in $\mathcal{R}\left(u+u p^{n}\right)$. It follows that not only $j+y$ but also $j^{\prime}+y^{\prime}$ belongs to $\mathfrak{H}(u)$. Hence, by the assumption $\mathfrak{H}(u)=\left\{\psi_{u}\right\}$,

$$
j(1)+y(1)=u, \quad j^{\prime}(1)+y^{\prime}(1)=u
$$

and, for each $b \in I \backslash\{1\}$,

$$
j(b)=y(b)=j^{\prime}(b)=y^{\prime}(b)=0 .
$$

Furthermore, neither of the equalities

$$
(j(1), y(1))=(u, 0), \quad\left(j^{\prime}(1), y^{\prime}(1)\right)=(0, u)
$$

holds, because u is not divisible by p. We thus obtain

$$
(j, y)=\left(0, \psi_{u}\right), \quad\left(j^{\prime}, y^{\prime}\right)=\left(\psi_{u}, 0\right)
$$

These mean that

$$
\begin{aligned}
\mathcal{R}(u) & =\mathcal{Q}_{1}(u)=\left\{\left(0, \psi_{u}\right)\right\} \\
\mathcal{R}\left(u+u p^{n}\right) & =\mathcal{P}_{1}\left(u+u p^{n}\right)=\left\{\left(\psi_{u}, 0\right)\right\}
\end{aligned}
$$

In particular,

$$
s(u)=\tilde{u}, \quad s\left(u+u p^{n}\right)=-\tilde{u}
$$

Since l does not divide $2 \tilde{u}=s(u)-s\left(u+u p^{n}\right)$, we then see from [3, Lemma 2] (or [2, Lemma 3]) that l does not divide h_{n} / h_{n-1}.

In the case $u>l$, taking any (j, y) in $\mathcal{R}\left(u+l p^{n}\right)$ and any $\left(j^{\prime}, y^{\prime}\right)$ in $\mathcal{R}\left(u+(u-l) p^{n}\right)$, we have by the hypothesis

$$
(j, y)=\left(\psi_{l}, \psi_{u-l}\right), \quad\left(j^{\prime}, y^{\prime}\right)=\left(\psi_{u-l}, \psi_{l}\right)
$$

similarly to the above, and hence we have successively

$$
\begin{aligned}
\mathcal{R}\left(u+l p^{n}\right) & =\mathcal{Q}_{1}\left(u+l p^{n}\right)=\left\{\left(\psi_{l}, \psi_{u-l}\right)\right\} \\
\mathcal{R}\left(u+(u-l) p^{n}\right) & =\mathcal{P}_{1}\left(u+(u-l) p^{n}\right)=\left\{\left(\psi_{u-l}, \psi_{l}\right)\right\} \\
s\left(u+l p^{n}\right) & =-\tilde{u}, \quad s\left(u+(u-l) p^{n}\right)=\tilde{u}
\end{aligned}
$$

It therefore follows again from [3, Lemma 2] that l does not divide h_{n} / h_{n-1}.
2. Assume now that p is 23 and l a primitive root modulo 529. In the rest of the paper, we are devoted to the proof of the theorem already stated.

Let $\rho=e^{\pi i / 11}$, so that

$$
V=\left\{\rho^{0}=1, \ldots, \rho^{10}\right\}, \quad \rho^{11}=-1
$$

We take any $z \in \Phi$ and put

$$
\alpha=\sum_{\xi \in V} z(\xi) \xi-1=\sum_{m=0}^{10} \rho^{m} w_{m}
$$

where $w_{0}=z(1)-1, w_{1}=z(\rho), \ldots, w_{10}=z\left(\rho^{10}\right)$. We further put

$$
W_{c}=\sum_{m=c}^{10} w_{m} w_{m-c}-\sum_{m=0}^{c-1} w_{m+11-c} w_{m}
$$

for each $c \in\{1, \ldots, 5\}$. Let σ be any automorphism of $\boldsymbol{Q}(\rho)$. It follows that

$$
\begin{aligned}
|\sigma(\alpha)|^{2} & =\left(\sum_{m=0}^{10} \sigma(\rho)^{m} w_{m}\right)\left(\sum_{m=0}^{10} \sigma(\rho)^{-m} w_{m}\right) \\
& =\sum_{c=1}^{10}\left(\sigma(\rho)^{c}+\sigma(\rho)^{-c}\right) \sum_{m=c}^{10} w_{m} w_{m-c}+\sum_{m=0}^{10} w_{m}^{2} \\
& =\sum_{c=1}^{5}\left(\sigma(\rho)^{c}+\sigma(\rho)^{-c}\right) W_{c}+\sum_{m=0}^{10} w_{m}^{2}
\end{aligned}
$$

In view of the above expansion and the simple fact that, for real constants r_{1} and r_{2}, the function $x^{2}+$ $r_{1} x+r_{2}$ of a real variable x defined on a closed interval takes its maximum at an endpoint of the interval, we find that if the real function

$$
\left(\sum_{m=0}^{10} \sigma(\rho)^{m} x_{m}-1\right)\left(\sum_{m=0}^{10} \sigma(\rho)^{-m} x_{m}-1\right)
$$

of eleven variables x_{0}, \ldots, x_{10} in the closed interval $[0,2 l]$ takes its maximum, then each value of x_{0}, \ldots, x_{10} is 0 or $2 l$ and so

$$
\begin{gathered}
-4 l^{2}<\sum_{m=1}^{10} x_{m}^{\prime} x_{m-1}^{\prime}-x_{10}^{\prime} x_{0}^{\prime} \leq 36 l^{2} \\
-8 l^{2}<\sum_{m=2}^{10} x_{m}^{\prime} x_{m-2}^{\prime}-\sum_{m=0}^{1} x_{m+9}^{\prime} x_{m}^{\prime} \leq 28 l^{2} \\
-12 l^{2}<\sum_{m=3}^{10} x_{m}^{\prime} x_{m-3}^{\prime}-\sum_{m=0}^{2} x_{m+8}^{\prime} x_{m}^{\prime} \leq 20 l^{2} \\
-12 l^{2} \leq \sum_{m=4}^{10} x_{m}^{\prime} x_{m-4}^{\prime}-\sum_{m=0}^{3} x_{m+7}^{\prime} x_{m}^{\prime}<16 l^{2} \\
-12 l^{2}<\sum_{m=5}^{10} x_{m}^{\prime} x_{m-5}^{\prime}-\sum_{m=0}^{4} x_{m+6}^{\prime} x_{m}^{\prime} \leq 12 l^{2}
\end{gathered}
$$

where $x_{0}^{\prime}=x_{0}-1, x_{1}^{\prime}=x_{1}, \ldots, x_{10}^{\prime}=x_{10}$. Hence

$$
\begin{aligned}
\mathfrak{N}(\alpha)= & \prod_{d=0}^{4}\left|\sum_{c=1}^{5} 2 W_{c} \cos \frac{\pi c 3^{d}}{11}+\sum_{m=0}^{10} w_{m}^{2}\right| \\
< & \left(\left(18 \cos \frac{\pi}{11}+14 \cos \frac{2 \pi}{11}+10 \cos \frac{3 \pi}{11}\right.\right. \\
& \left.+8 \cos \frac{4 \pi}{11}+6 \cos \frac{5 \pi}{11}+11\right)
\end{aligned}
$$

$$
\begin{aligned}
& \times\left(18 \cos \frac{3 \pi}{11}+4 \cos \frac{5 \pi}{11}+6 \cos \frac{2 \pi}{11}\right. \\
& \left.\quad+6 \cos \frac{\pi}{11}+6 \cos \frac{4 \pi}{11}+11\right) \\
& \times\left(2 \cos \frac{2 \pi}{11}+14 \cos \frac{4 \pi}{11}+10 \cos \frac{5 \pi}{11}\right. \\
& \left.\quad+6 \cos \frac{3 \pi}{11}+6 \cos \frac{\pi}{11}+11\right) \\
& \times\left(18 \cos \frac{5 \pi}{11}+4 \cos \frac{\pi}{11}+6 \cos \frac{4 \pi}{11}\right. \\
& \left.\quad+8 \cos \frac{2 \pi}{11}+6 \cos \frac{3 \pi}{11}+11\right) \\
& \times\left(2 \cos \frac{4 \pi}{11}+4 \cos \frac{3 \pi}{11}+10 \cos \frac{\pi}{11}\right. \\
& \left.\left.\quad+6 \cos \frac{5 \pi}{11}+6 \cos \frac{2 \pi}{11}+11\right)\right)\left(4 l^{2}\right)^{5}
\end{aligned}
$$

We thus obtain

$$
M<50412966(2 l)^{10}
$$

Let P be the set of prime numbers which are primitive roots modulo 529 . Let S be the set of pairs $\left(n^{\prime}, l^{\prime}\right)$ such that n^{\prime} is a positive integer, l^{\prime} is a prime number in P, and
$23^{n^{\prime}}<50412966\left(2 l^{\prime}\right)^{10}, \quad l^{\prime}<11 \log _{2}\left(\frac{23^{n^{\prime}+1}}{\pi} \sin \frac{\pi}{23}\right)$.
Each $\left(n^{\prime}, l^{\prime}\right)$ in S then satisfies

$$
n^{\prime} \leq 31, \quad l^{\prime} \leq 1523
$$

By [3, Lemma 1], n, l) belongs to S if l divides h_{n} / h_{n-1}.

We put, for later convenience,

$$
\begin{aligned}
S^{\prime}= & \left\{\left(7, l^{\prime}\right) \mid l^{\prime} \in P, 293<l^{\prime} \leq 389\right\} \\
& \cup\left\{\left(8, l^{\prime}\right) \mid l^{\prime} \in P, 389<l^{\prime} \leq 613\right\} \\
& \cup\left\{\left(9, l^{\prime}\right) \mid l^{\prime} \in P, 613<l^{\prime} \leq 1523\right\}
\end{aligned}
$$

From now on, suppose that (n, l) belongs to $S \cup S^{\prime}$. As $h_{0}=1$, it suffices for our proof to show that l does not divide h_{n} / h_{n-1}. We define a unit η in \boldsymbol{B}_{n} by

$$
\eta=\prod_{a \in I} \frac{\sin \left(2 \pi a / 23^{n+1}\right)}{\sin \left(2 \pi\left(23^{n}+1\right) a / 23^{n+1}\right)}
$$

This is a typical example of a circular (or cyclotomic) unit of \boldsymbol{B}_{n}. For each positive integer $m \leq 10$, let a_{m} denote the integer such that

$$
a_{m} \equiv 5^{23^{n} m} \quad\left(\bmod 23^{n+1}\right), \quad 0<a_{m}<23^{n+1}
$$

Since 5 is a primitive root modulo 23^{n+1}, we take as \mathfrak{p} the prime ideal of the 11th cyclotomic field $\boldsymbol{Q}(\rho)$ generated by 23 and $a_{1}-\rho$. It follows that

$$
I=\left\{1, a_{1}, \ldots, a_{10}\right\}
$$

We let $\|\eta\|$ denote the maximum of the absolute values of all conjugates of η over \boldsymbol{Q}. Lemma 2 of [2] implies that $h_{n} / h_{n-1} \not \equiv 0(\bmod l)$ if $l \geq \log _{2}\|\eta\|($ cf. [1, Lemmas 2, 3]).

Let us first consider the case $n \leq 5$. Put

$$
\begin{aligned}
S_{1}= & (\{1,2,3,4\} \times\{5,7,11\}) \cup(\{2,3,4\} \times\{17,19\}) \\
& \cup(\{4,5\} \times\{37\}) \\
& S_{2}=\{(5,5),(5,7),(5,11),(5,17),(5,19)\} \\
& =\{5\} \times\{5,7,11,17,19\}
\end{aligned}
$$

Table I

(n, l)	$s(1)$	$s\left(1+23^{n}\right)$
$(5,37)$	-20	-1
$(4,37)$	-313	-153
$(4,19)$	-70	155
$(4,17)$	-75	18
$(4,11)$	-10	13
$(4,7)$	26	-6
$(4,5)$	13	-10
$(3,17)$	-294	-322
$(3,11)$	-94	-74
$(3,5)$	29	-23
$(2,19)$	6170	1482
$(2,11)$	2803	73
$(2,5)$	211	-10
$(1,11)$	15055	-11216
$(1,7)$	-3532	-3975
$(1,5)$	115	769

Table II

(n, l)	$s(2)$	$s\left(2+23^{n}\right)$
$(3,19)$	242	-427
$(3,7)$	-134	-41
$(2,17)$	-1297	-2032
$(2,7)$	-55	1335

Using a personal computer together with Mathematica, we have verified that the maximal integer not exceeding $\log _{2}\|\eta\|$ is either $12,20,27,40$ or $38 \mathrm{ac}-$ cording as n is either $1,2,3,4$ or 5 . Therefore (n, l) satisfies $l<\log _{2}\|\eta\|$ if and only if $(n, l) \in S_{1} \cup S_{2}$. By further use of the (personal) computer under the condition $(n, l) \in S_{1}$, we have computed $s(m)$ for suitable integers m after the determination of $\mathcal{P}_{a}(m)$, $\mathcal{Q}_{a}(m)$ for all $a \in I$. Results for such cases of (n, l) are given in Tables I and II. We therefore know from [3, Lemma 2] that l does not divide h_{n} / h_{n-1} when (n, l) belongs to S_{1}. In the case $(n, l) \in S_{2}$, we can find by computer an example of u satisfying the hypothesis of Lemma 2; namely, we have $\mathfrak{H}(u)=\left\{\psi_{u}\right\}$, with u equal to either $3,6,2,7$ or 36 , according to whether l is either $5,7,11,17$ or 19 . Hence, by Lemma 2, the product $5 \cdot 7 \cdot 11 \cdot 17 \cdot 19$ is relatively prime to $h_{n^{\prime}} / h_{n^{\prime}-1}$ for all integers $n^{\prime} \geq 5$. It is thus proved that $h_{n} / h_{n-1} \not \equiv 0(\bmod l)$ whenever $n \leq 5$.

Let us next proceed to the case where $n=6$ so that $l \leq 293$. By an argument above, we may suppose that $l \notin\{5,7,11,17,19\}$, i.e., $l \geq 37$. With the help of a computer, as in the case $(n, l) \in S_{2}$, we can always find an example of u satisfying the hypothesis of Lemma 2. Values of $u \in\{1, \ldots, l-1\}$ such that $\mathfrak{H}(u)=\left\{\psi_{u}\right\}$, for all values of l, are given in Table III. Consequently, Lemma 2 actually shows that $h_{n} / h_{n-1} \not \equiv 0(\bmod l)$ not only when $n=6$ but also when $n \geq 7$ and $l \leq 293$.

Let us finally deal with the case $n \geq 7$. Naturally supposing that $l>293$, we put

$$
T=\left\{\left(n^{\prime}+m, l^{\prime}\right) \mid\left(n^{\prime}, l^{\prime}\right) \in S^{\prime}, 0 \leq m \in \boldsymbol{Z}\right\}
$$

In the case $(n, l) \in S^{\prime}$, we have checked $\mathfrak{S}(1)=\left\{\psi_{1}\right\}$ by computer. Therefore, in virtue of Lemma $2, l$ does not divide $h_{n^{\prime}} / h_{n^{\prime}-1}$ for all integers n^{\prime} with $\left(n^{\prime}, l\right) \in T$. Since

$$
\left\{\left(n^{\prime}, l^{\prime}\right) \mid\left(n^{\prime}, l^{\prime}\right) \in S, n^{\prime} \geq 7\right\} \subseteq T
$$

it then follows that $h_{n} / h_{n-1} \not \equiv 0(\bmod l)$ whenever $n \geq 7$. Thus the theorem is completely proved.

Correction to [1]. Instead of defining $f(\chi, u)$ by line 19 on page 258 , one should define $f(\chi, u)$

Table III

l	37	43	53	61	67	79	83	89	97	103	107	113	149	157	181	191	199	227	241	251	281
u	1	1	1	2	2	1	1	2	4	2	1	90	3	3	13	3	4	8	4	8	12

as the maximal divisor of $f(\chi)$ relatively prime to u, with the notation \tilde{u} retained; furthermore, on page 260, " $q_{0}=\operatorname{gcd}(q, 2 t) "$ in line 3 , " $f^{\prime}=f\left(\psi_{2}^{d}\right)$ " in line 6 , and " $\psi_{2}^{d}(b)=1$ " in line 11 should be $" q_{0}=f\left(\psi_{2}\right) / t ", " f\left(\psi_{2}^{d}\right) \mid f^{\prime} "$, and " $\psi_{2}(b)^{d}=1 "$, respectively.

Acknowledgment. The authors express their sincere gratitude to the referee who carefully read the paper in manuscript and made helpful comments for its improvement.

References

[1] K. Horie, Ideal class groups of Iwasawa-theoretical abelian extensions over the rational field, J.

London Math. Soc. (2) 66 (2002), no. 2, 257275.

2] K. Horie, Primary components of the ideal class group of the \boldsymbol{Z}_{p}-extension over \boldsymbol{Q} for typical inert primes, Proc. Japan Acad. Ser. A Math. Sci. 81 (2005), no. 3, 40-43.
[3] K. Horie and M. Horie, The narrow class groups of some \boldsymbol{Z}_{p}-extensions over the rationals, Acta Arith. 135 (2008), no. 2, 159-180.
[4] K. Horie and M. Horie, The narrow class groups of the $\boldsymbol{Z}_{17^{-}}$and \boldsymbol{Z}_{19}-extensions over the rational field, Abh. Math. Sem. Univ. Hamburg. (to appear).
[5] K. Iwasawa, A note on class numbers of algebraic number fields, Abh. Math. Sem. Univ. Hamburg 20 (1956), 257-258.

[^0]: 2000 Mathematics Subject Classification. Primary 11R29; Secondary 11R20, 11R23.
 *) Department of Mathematics, Tokai University, 1117, Kitakaname, Hiratsuka, Kanagawa 259-1292, Japan.
 ${ }^{* *}$) Department of Mathematics, Ochanomiz University, 2-1-1, Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan.
 \dagger) Corresponding author.

