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On the cohomology of the mod p Steenrod algebra

By Xiugui Liv”) and He WaNG

(Communicated by Heisuke HIRONAKA, M.J.A., Oct. 13, 2009)

Abstract:

Let p be an odd prime greater than seven and A the mod p Steenrod algebra. In

this paper we prove that in the cohomology of A the product hlhngsH € EX‘CTG’I"(S’RHS(Z[,, Z,) is

nontrivial for n > 5, and trivial for n = 3,4, where 5S+4 is actually &Y, described by X. Wang

s+4

and Q. Zheng, 0<s<p—4, t(s,n)=2(p—D[(s+ 1)+ (s+3)p+ (s+3)p*+ (s +4)p> + p"].
We show our results by explicit combinatorial analysis of the (modified) May spectral sequence.

The method of proof is very elementary.

Key words:

1. Introduction and statement of results.
In this paper, p always denotes an odd prime and
q=2(p—1).

To determine the stable homotopy groups of
spheres is one of the most important problems in al-
gebraic topology. So far, several methods have been
found to determine the stable homotopy groups of
spheres. For example, we have the classical Adams
spectral sequence (ASS) (cf. [1]) based on the
Eilenberg-MacLane spectrum KZ,, whose Es-term
is the cohomology of A-Ext%'(Z,,Z,), where A de-
notes the mod p Steenrod algebra. So, for computing
the stable homotopy groups of spheres with the clas-
sical ASS, we must compute the F>-term of the ASS,
Ext"(Z,,Z,).

The known results on Ext’;"(Z,, Z,) are as fol-
lows: Ext%"(Z,,Z,) = Z, by its definition. From
2], Ext'"(Z,,Z,) has Z,-basis consisting of ay €
Ext}'(Z,, Z,), hi € Ext\"'(Z,, Z,) for all i > 0, and
Ext’"(Z,,Z,) has Z,-basis consisting of as, a2,
hihj(j =1+ 2,1 > 0) whose internal degrees are 2¢q +
1, 2, pig+1,pitlq+ 2piq, 2pitlq+ pig, ptlq and
p'q+ plq respectively. In 1980, Aikawa [3] deter-
mined Exti*(zp, Z,) by M-algebra.

In [4], X. Wang and Q. Zheng proved the follow-
ing theorem.
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Theorem 1.1 [4]. Forp>1land0<s<p—
4, there exists the fourth Greek letter family ele-
ment by4q #0 € Ext;H’tl(sHs(Zp, Z,), where t(s) =
ql(s+4)p* + (s+3)p> + (s + 2)p+ (s + 1)]. Here we
write 6444 for ds4+4 which is described in [4].

In [5], X. Liu and H. Zhao showed the following
result.

Theorem 1.2 [5, Theorem 1.2]. For p > 11
and 4 < s < p, the product B bods # 0 in the classical
Adams spectral sequence.

The method of proof of Theorem 1.2 above is by
explicit combinatorial analysis of the May spectral
sequence (MSS), and very elementary. In the ASS
ho and by detect the a-element «; and (-element (3
respectively, and 8, is the element of lowest filtra-
tion which could detect the element 4 arising from
the existence of a self-map on Toda-Smith spectrum
V(3) inducing multiplication by v} in BP-homology
of V(3). It follows that hobods could detect the com-
posite oy 16, in the ASS.

In this note, our main results can be stated as
follows:

Theorem 1.3. Forp>11,0<s<p—4 and
t(s,n)=ql(s+1) + (s +3)p+ (s +3)p* + (s + 4)p* +
p"]. Then in the cohomology of the mod p Steenrod
algebra A Ext‘fﬁ"f’(s’")ﬂ(zp, Z,),

(1) the product by hubssia is nontrivial for n = 5.

(2) the product Iy Bnbyia is trivial for n = 3,4.

The paper is arranged as follows: after introduc-
ing a method of detecting generators of the Fi-term
E}™" of the MSS in Section 2. Section 3 is devoted to
showing Theorem 1.3.

2. A method of determining generators

of the May E;-term E;™". In this section, we
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will give a new method used to determine genera-
tors of the May Ej-term E[™". We refer the reader
to Section 2 of [5] for the MSS, and denote a;, h; j
and b; ; by z, y and z respectively. By the graded
commutativity of EI**, we can suppose a generator
g=(z1---x) (- (z1---2) € BF, where
t=(Go+c+ - +&p)g with 0<¢g <p (0<i <
n),0<¢, <p,0<b<yq

Assertion. If s < b+ q, u must equal b.

Otherwise, by the characteristics of deg a;,
deg b; j, deg h; ; and deg g, we would get u=15b +
wq for some integer w > 0. It follows that dim g >
b+ wq > s =dim g which is a contradiction. The
assertion is proved.

So we have g= (21 7)(g1 o) (1 -+ 21) €
EP By [5, (2.5)], the degrees of 2, y; and z; can
be expressed uniquely as:

deg x; = (zig+ziip+ -+ xinp")g+ 1,
deg yi = (yip +yiap + -+ yind")q
deg 2z = (0+ zap+ -+ zinp")g,

(a) (xio,xi1, --,%in) is of the form (1,---,1,
0,--,0),

(b)) (Yi0:¥i1, -+ ¥in) is of the form (0,---,0,
L"’alaoa"'ao)a

(C) (07 Zily
1,--+,1,0,---,0).

By the graded commutativity of E{™" , the gen-

-, %in) 1s of the form (0,---,0,

erator g = (z1---2) (Y1 - y) (21 -+ - 21) € B can
be arranged in the following way:
(i) If i > j,we put a; on the left side of a;,
ii) If j < k,we put h; ; on the left side of Ay,
If i > w, we put h; ; on the left side of h,, j,
iv) Apply the same rules (ii) and (iii) to b; ;.
Then from (a)—(c) and (i)—(iv), the factors z; ;,
;5 and z; j in g must satisfy the following conditions:
(1) 2=z a0;> -
(2) mig=zin > -
(3) If yij-1 =0and y;; =1,
then for all k£ < j ;1 = 0;
(4) If y;; =1 and y; j1 =0,
then for all k > j y; 1, = 0;
(5) yio=y202 - =Yoo
(6) If yio = Yir1.0,Yin = Yir1,1," ">
Yij = Yir1,j, then vi i1 2 yiv1 s
(7) Apply the same rules (3)~(6) to z ;.

= Xp, 5

= Tip;

[Vol. 85(A),

b !
From deg g = > deg x; + > _ deg y; + > deg z;,
i=1 i=1 i=1

by the properties of the p-adic number we get the
following group of equations

(2.2)

Tig+ T+ Yo+ + Yoo+ 0+ +0
:50+k?0p7

Tyg+oF T YTt Y TR
211 = €1 + kip — ko,

v

Tip1+  F+ Tpp1+Yp-1t "+ Y1t
Zip—1+ -+ 21 = Cho1 + Ekno1p — kyoa,
Tt Tt yint+ -+ Yon + 20+
kn1,

Zln = Cp —

where k; > 0for0<i<n—1.

In the above group of equations, we get
two integer sequences K = (kg,ki,---,k,-1) and
S = (¢ + kop,¢1 + kip — ko, -+, Gy —kn—1) denoted
by (co,c1,+ -+, ¢,) which is determined by (ko, k1, - - -,
k,—1) and (¢g,¢1,- -, C,). We want to get the solu-
tions of the group of equations (2.2) which satisfy
the conditions (2.1).

Remark. Since the values of z; ;, y; ; and 2; ;
must be 0 or 1, to solve the group of equations (2.2)
will be mechanical. Since we want to get the solu-
tions of the group of equations (2.2) which satisfy
the conditions (2.1), we can use the conditions (2.1)
in solving the group of equations. For example, if
x10 = 0 for x1, using the conditions (1)—(2) of (2.1),
we will get all z; ; = 0. By the method, to determine
the solutions of the group of equations (2.2) which
satisfy the conditions (2.1) will not be too difficult.

Notice that the elements xz;, y; and z; are
uniquely determined by their degrees. A solution of
(2.2) which satisfies (2.1) determines a generator g
by setting deg x; (respectively y; and z;) to be (x;0 +
Tiap+ -+ 2ipp")g+ 1 (respectively (yio +wiip +
<+ yinp")q and (0+ z1p+ -+ 2in)g). Thus for
the ES™"_term where t = (¢4 ap+ - + cup”)q
with 0<¢ <p (0<i<n), 0<¢, <p, 0<b<yq,
the determination of ;""" is deduced to the follow-
ing steps:

(1) List up all the possible (b,v,l) such that
b+v+2l=s.

(2) For each given (b,v,1), list all the sequences
K = (ko, k1, -+, kn—1) and S = (co,c1,---,¢,) such
that ¢, <b+ov+ilforall 0 <i<n.
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(3) For each given (b,v,l), the sequences K =
(ko, k1, -+, kn—1) and S = (cp,c1,---,¢,), solve the

group of equations (2.2) by virtue of (2.1), then de-

termine all the generators of E;**

corresponding second degrees.

3. Proof of Theorem 1.3. In this section we
first give two lemmas which are needed in the proof
of Theorem 1.3.

Lemma 3.1 [5, Lemma 3.1]. For p > 11 and
0<s<p—4. Then the fourth Greek letter family
element 6,4 € Ex t€+4 he +g(Z Z,) is represented
by a4h4 th 1h2 2h13 S Es+4 h(s )+S* in the E1 term Of
the MSS, where t(s ) (s+1)+(s+2)p+ (s+
3)p* + (s +4)p’lq.

Lemma 3.2. Letp=11,n>
Then the May E,-term satisfies

by setting the

4,0<s<p—4.

0 n>5and0<s<p-—5,
El.e+5,t(s,7l)+sv* =< M n=4,
K n>zb5ands=p->5.

Here, t(s,n) = [(s+1) + (s +3)p+ (s+ 3)p* + (s +
4)p* + p"lq, M is the Z,-module generated by four-
teen elements

gl = ajhaphsihi3bag,

g2 = ajhyohy1hs1br o,

g3 = ajhsohs,ihi b,

g4 = ajhyohy b33,

g5 = ajhaohs,ihe3bsp,
“hyohs1hi3bs,

g7 = ajhyohsiha1hazhy 3,
“ashyohshsihaohi 3,
89 = ajhophaihsihoohy s,
g10 = asa; 'hyohs1hi1hoshy 3,
gll = ajhsohshi1haohi s,
g12 = ajhyohyihiihoohy s,
gl3 = ajhiohs1hi1hs2hi s,
gld = ajhiohsihi1ho2ha s,

g6 = asaj

g8 =aj

where
gl c E1,9+5,t(5,4)+s‘98+7p+13

9

g2 € B 5+5-¢(S,4)+s.,95+p+19

gi € E 9+5 Jt(s,4)+s, 9€+5p+15(3

gl € B,

<i<6),
i <14),

and K is the Z,-module generated by one element

s+5,t(s,4)+5,95+19 (7
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gl5 = a?hy, ohy—11ha1hn—33hn_14
p,t(p75,n)+p75,(2n+l)(p75)+8n713
€ B!

s+5,t(s, n)+9 *

Proof. Consider g€ E; where
t(s,n) =[(s+1) + (s +3)p+ (s +3)p” + (s + 4)p° +
pn]q with (50,51752,63,54,'",En,—laén) = (S+ 1,

s+3,5+3,s+4,0,---,0,1). Then dimg=s+5
and deg g =1t(s,n)+s. Since s+5<s+g,
cording to the assertion in Section 2, the number
of x; in g is s. By the reason of dimension, all the

ac-

possibilities of g can be listed as xjxg - xsy12122,
T1X2 -~ TsY1Y2Y321, L1X2 -~ - TsY1Y2Y3Y4yYs.-

Case 1. g=x179 - x5y12122. Note that s <
p—4. Then Zx”+ylj+21]+22] s+3<

s+ 3 < pforall O < n. one easily gets the integer
sequence K = (ky, kl, ~,l<:n,1) in the corresponding
group of equations (2.2) equals (0,0,---,0), and
then S = (¢, ¢1,¢,¢3,¢4+yCp1,6n) = (s+ 1, s+ 3,
S
s+3,54+4,0,---,0,1). Since Y xi3+y13+ 213+
i=1
203 < s+ 3 < s+ 4 = c3, the fourth equation of (2.2)
has no solution. It follows that such g is impossible to
exist.

Case 2. g= 129 TsY1Yoys32z1. Similar to
Case 1, we can get that the integer sequence
K = (ko,k1,--,ky—1) in the corresponding group
of equations (2.2) is (0,0,---,0), and then S =
(co,c1,C2,¢3,¢4+yCno1,¢n) = (s+1,84+ 3,5+ 3,5 +
4,0,---,0,1).

S
>5. Since Y wiz+yis+
i=1
Y23 + Y33+ 213 =s+4, we get 957371113 = 123 =
Since 2%4 + 14 +
i=1
Yoat+ysat214=0,weget ;4 = Y14 = Y24 = Y34 =
z14 =0 for 1 <i<s. Then by the conditions (2),
(4) and (7) in (2.1), we get x;; =y, =Y =
ygj—le—O for 1<i<s and 5 <j<n, which

contradicts len+yl7z+y2n+ydn+21n—1 So
i=1

the corresponding group of equations (2.2) has no
solution. It follows that ¢ is impossible to exist.

Subcase 2.2. n = 4. We solve the correspond-
ing group of equations (2.2) by virtue of (2.1), and
get six nontrivial generators as follows:

Subcase 2.1. n

Y33 =z13=1 for 1<i<s.

gl = ajhyohs1hi3bso, g2 = ajhigohyihsibia,
g3 = ajhsohs1hi3bso, g4 = ajhiohaihizbsg,

g5 = ajhiohs1hasbso, 86 = asal " haohsihi3bso,
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where

5,t(s,4)+5,9s+7p+13 5,t(s,4)+s,9 19
gle Elsﬂ, (5,4)+s,9s+7p+ g2 ¢ Els+o (5,4)+s,95+p+
. 5+5,t(s,4)+5,95+5p+15 .
and gi € [ OIS g 3 < <6,

Case 3. g= 7172 TY1Y2Y3Y4Y5-

Subcase 3.1. n =4. Similar to Case 2, we
easily get that S = (cg,c1,co,c3,¢4) = (s+ 1,5+ 3,
s+3,s+4,1). One can solve the corresponding
group of equations (2.2) by virtue of (2.1), and get
eight nontrivial generators as follows:

g7 = ajhaohsiho1hoshi s,

g8 = a} 'ashyphsihs1hosh s,
g9 = ajhaghy1hsihsoh 3,

g10 = asa ' hyghs1hi1hooh 3,
gll = ajhsphs1hi1ha2hy 3,
gl12 = ajhyohaihihoohi s,
gl3 = ajhaohsihi1hsohi s,
gld = ajhyphsihihoohs s,

where gi € Ef+5’t(s’4)+s"gs+19 for 7 < i < 14.

Subcase 3.2. n>=5 and 0 <s < p—>5. Simi-
lar to Case 2, one can get that S = (¢, c1,co,cs,
Cay vy Cue1,Cn) = (8+1,8+3,5+3,s+4,0,---,
0,1). We solve the corresponding group of equa-
tions (2.2) by virtue of (2.1), and get a generator
aih4,0h§‘1h173h17" which is trivial by h?;’] =0.

Subcase 3.3. n>5 and s=p—>5. Since

S

lew Ty Ty Yy Tt Ys S s +S=p
iz

(0 < j < n), all possibilities of the integer sequence
K = (ko,k1,---,kn—1) in the corresponding group
of equations (2.2) are K; =(0,0,---,0) and K; =
(0,0,0,0,0,---,0,10,1,---,1) (5<i<n), where
1) means that 1 is the i-th term of the sequence K;.
Then the corresponding sequence S = (¢, ¢1, ¢, ¢3,
Cqy vy Cue1, Cn) are listed as follows:

Si=(p-4,p—-2,p—2,p—1,0,---,0,1),

Si = (p_47 p—2, p_27 p_17 0)"'a 0) p(i)a
p—1,---,p—1,0) (5<i<n).

For S;, we solve the corresponding group of
equations (2.2) by virtue of (2.1), and get a genera-
tor af “haoh3 hishi, which is trivial by A3, = 0.
For S5, one can solve the corresponding group
of equations (2.2) by virtue of (2.1), and get
a generator glb = aﬁ"r’hmghn,mh4,1hn,3‘3hn74,4 S

Elp,f,(p—5)+p—5,(2n+1)(p—5)+8n—13. For 57(6 <i< n), it is

X. Liv and H. WANG
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easy to get the corresponding group of equations
(2.2) has no solution.

Combining Cases 1-3 gives the desired result. []

Proof of Theorem 1.3. (1) It is known
that hy, € EJ"”'"" is a permanent cycle and re-
presents h, € Exti{pnq(Zp,Zp) in the MSS for
n>=>0. By Lemma 3.1, 55+4 is represented by
aihaghsihoohys € BSOS 4y the MSS. Thus,
hl,lhl.naih4,0h3,lh2,2h1,3 c E.le+6,t(s,n)+s,95+18 is a per-
manent cycle in the MSS and represents hlhn55+4 S
Ext"(Z,,Z,).

Case 1.
May E;-term

0 <s<p-—>5. From Lemma 3.2, the

E15+5,t(s,n)+s.* _ 07

which implies that Ef+5't(‘9’")+s‘* =0 for r > 1. Con-

sequently, hiihi,aihaohsiheohi 3 cannot be hit by
any May differential in the MSS. Thus in this case,
h1hpbs1q4 # 0.

Case 2. s=p—>5. By Lemma 3.2,

El.s+5,t(s,n)+s,* _ Elpﬁt(p—S,n),* _ Zp{g15}

Note that M(gl5) = (2n + 1)(p — 5) + 8n —
13 and M(hl,lh177,,a2_5h4‘0h371h2,2h173) = g(p -
5) + 18. By the reason of May filtration, we
have that h1,1h1’7la}§75h470h3,1h2’2h1,3 is not in
dl(Ef,t(p—f»,vz)+p—57(2n+1)(p—5)+8n—13). At the same time,
from

di(g15) = di (a2 °hyohn_11ha1hy—33h—14)
=— a{175d1(hzb,0)h71,—1,1 hajhn—33hn—14
= —a
40,

p—5.n)+p—>5,(2n+1)(p—5)+8n—13

5
hn—22hoohn—11ha1hn_330n_44

we get EP! 0 (r=
2), showing that h1,1hlynaif"hwhg’lh2_2h173 is not
in dr(E;{J,t([)—f),lb)"'])—va(27L+1)(p_5)+8’71r—13) for r>1.
Thus hl‘lhlwnaiish&ghg’lhz’ghl’g cannot b~e hit by
any May differential, showing that hih,0,—1 # 0 €
EXtPA+1at(P_5v7l)+p_5(Zp7 Zp)'

This completes the proof of Theorem 1.3(1).

(2) Since hih3ds.4 is represented in the MSS by
hl,lhl,gazhzlv()hg,lhg,ghl,g which is trivial by h%’g =

0, it follows that hih3ds14 = 0. To show hihydsiq =
0, it suffices to prove h1‘1h174ajh4_’0h3‘1h272h173 c
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E‘f%‘t(sAHS’QSHS which  represents h1h4(§s+4 €

Ext}"(Zy,Zy) is in dl(Ef+5"t(5’4)+s"95+19). By Lemma
3.2 we get that

s+5,t(s,4)+s,95+19
AT _ g (o7 . gl4).

By [5, (2.3)] and [5, (2.4)], we compute the first May
differential of gi(7 <i < 14) as follows (Using the
graded commutativity in the MSS, we arrange the
factors of every term of dy(gi) (7 <i < 14) in the
way of (i), (ii) and (iii) in Section 2):
di(g7) = (—1)5(—Saifla2h4.oh3,1h2,1h2,2h2,3h1,31
- aih2,0h3,1h2,1h2,2h2‘3h1,39
+ aih4,oh2,1h1,1h272h2,3h1,33

- ai h4,o h3,1 h1,1 h172 h2,3h1,34)7

di(g8) = (—1)°(—aj " aphsohaghas hsahash s,

s—1
—a, ap h4‘0h4,1 h3,1 h1,1 h2,2 h1,36

s—1
+ ai az h4‘0h3,1 hl‘l h3,2 h2,2 h1,37

s—1
—ay a2 h4,0h3,1 h2,1 h2,2 h2,3 h1,31 ) )

di(g9) = (_1)8(Sai_1a0h4,0h2,0h4,1h3,1h2,2h1,35
— azhiohaahzihahoohi s,
+ ajhophs hiahsahoaly s,
— ajhyohg1ha1haohashi, ),

di(g10) = (—1)*(a§  aphs ohaohsi hiaheahs o

-1
- CLZ ay th,()h4,1h:’,,1h1,1h2,2h1,36

s—1
- GZ a3 h4ﬁoh371 h1,1 hs,z h2,2 h1,37

s—1
+aiazhaohsihinhesha sy |

- aih4,oh3,1h1,1h2,2h1,3h1,412);

di(gll) = (*1)5(*saifla0h5,oh4‘0h3,1h171h272h1’31
— aih1,oh4,1h3,1h1=1h2’2h1’38
— ajhoghsihiihgohsohs
+ athsohsihiiheohashis o

- aih4,oh3,1h1,1h2,2h1,3h1.412),

0

di(gl2) = (—1)5(Saifla1h4,oh4,1h3,1h171h2,2h1,36
+ aihl,ohzl,lh3,1h1,1h2,2h1,38
+ aih4,0h2,lh1,1h2,2h2,3h1,33

- aih4,0h3,1 h1,1 hz,z h1,3 h1,412) »
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di(gl3) = (—1)5(Saifla2h4,oh3,1h1.1h3,2h2,2h1ﬁ37
+ ajh2,0h371h1,1h3,2h2,2h1,39

+ ajhaohsihiihighos his,
- aih4.0h3,1h1,1h2,2h1,3h1,412)7

di(gl4) = (—1)8(—Saifla:ahﬁ‘,ohs;h1,1h2‘2h2,3h1‘311

— ajhsohsahiahoshoshyg
- aih4,0h2,1h1,1h2,2h2,3h1,33
- aih4,0h3,1h1,1h1,2h2,3h1,34

— ajhyohgihinhophishia,,).

Without generality, we let s be even. Then we get
the matrix of coefficients of di(g7), ---, di(gl4)
under the elements _;, o, _3, -+, _;3 which are
linearly independent as follows:

-s -1 1 -1 0 0 0 0 0 0 0 0 0
-1 0 0 o -1 -1 1 0 0 0 0 0 0
0 -1 0 0 s 0 0 -1 1 0 0 0 0
0 0 0 0 0 -1 -1 0 0 1 1 -1 0
00 0 0 0 0 0 -1 -1 —s 0 -1 1
0 0 1 0 0 s 0 1 0 0o 0 -1 0
0 0 0 1 0 0 s 0 1 0o 0 -1 0
00 -1 -1 0 0 0 0 0 0 —-s -1 -1
By the knowledge of matrix, we can get the

rank of the upper matrix is 7. We add a row
(0,0,0,0,0,0,0,0,0,0,0,1,0) in the upper matrix
and get a new matrix whose rank is also 7. This
implies that (0,0,0,0,0,0,0,0,0,0,0,1,0) can be
linearly represented by the other rows of the
upper matrix. Consequently aZh4,0h3,1h1,1h2,2h173h1’412

can be linearly represented by the May differ-
entials  dy(g7), ---, di(gl4), showing that

5+6,t(s,4)+5,95+18 . .
hiihyaaihaohsihephis € B (=4 is in

d (Els+5.,t(s.,4)+s,95+19) )

This finishes the proof of Theorem 1.3. O
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