On new singular directions of some Schröder functions

By Nan WU^{*)} and Zu-Xing XUAN^{*)**)†)}

(Communicated by Shigefumi MORI, M.J.A., Oct. 13, 2009)

Abstract: In this paper, we study the Hayman T directions and the precise Borel directions of maximal kind of meromorphic solutions f(z) of the Schröder equations f(sz) = R(f(z)), where |s| > 1 and R(w) is a rational function with $\deg[R] \ge 2$. We will show that, if $\arg[s]/2\pi \notin Q$, then f(z) has any direction as Hayman T direction and maximus Borel direction as well. This is a continue work of [Ishizaki, K. and Yanaihara, N., Borel and Julia directions of meromorphic Schröder functions, Math. Proc. Camb. Phil. Soc. 139 (2005), 139–147.] and [Yuan, W.J., Qi, J.M. and Seiki Mori. Singular directions of meromorphic solutions of some non-autonomous Schröder equations, Complex Analysis and its Applications Proceedings of the 15th ICFIDCAA held in Osaka (Japan), July 30–August 3, 2007].

Key words: Hayman T direction; Borel direction of maximal kind; Schröder function.

1. Introduction and results. Let R(w) be a rational function of degree $p \ge 2$ and s be a complex number with |s| > 1. Consider the Schröder equation

(1.1)
$$f(sz) = R(f(z))$$

It is known that under some conditions (1.1) has a transcendental meromorphic solution f(z), which is called Schröder function and its order is $\lambda = \log p/\log |s| > 0$. We suppose that the readers are familiar with the notations of the value distribution theory of meromorphic functions, such as m(r, f), N(r, f), T(r, f), for the detail see [12]. In order to make our statement clear, let us begin with some basic notations. Given an angular domain $\Omega = \{z : \alpha \leq \arg z \leq \beta\}$. Let f(z) be a meromorphic function in Ω . Define

$$N(r, \Omega, f = a) = \int_{1}^{r} \frac{n(t, \Omega, f = a)}{t} dt$$

where $n(t, \Omega, f = a)$ is the number of the roots of f(z) = a in $\Omega \cap \{1 < |z| < t\}$ counted according to multiplicity. Let $\overline{n}(t, \Omega, f = a)$ be the number of the roots of f(z) = a in $\Omega \cap \{1 < |z| < t\}$ counted only once, then $\overline{N}(t, \Omega, f = a)$ can be defined in the same way.

^{†)} Corresponding author.

The singular directions of the meromorphic solutions of the Schröder equations are studied abroad (see [7–9]). Ishizaki, K. and Yanaihara, N. [7] investigated the Borel and Julia directions of some Schröder equations and got the following result.

Theorem A. Let f(z) be a meromorphic solution of the Schröder equations f(sz) = R(f(z)), where |s| > 1 and R(w) is a rational function with deg $[R] \ge 2$. If $\arg[s]/2\pi \notin Q$, then f(z) has any direction as Borel direction.

Zheng [14] introduced a new singular direction, which is called T direction. The existence of T direction was first confirmed by Guo, Zheng and Ng [4]. We recall its definition as follows:

Definition 1.1. Let f(z) be a meromorphic function in the complex plane. A direction $\arg z = \theta$ is called a T direction of f(z), provided that given any $b \in \hat{\mathbf{C}} := \mathbf{C} \cup \{\infty\}$ and any small $\varepsilon > 0$ we have

(1.2)
$$\limsup_{r \to \infty} \frac{N(r, \Delta(\theta, \varepsilon), f = b)}{T(r, f)} > 0,$$

possibly with the exception of at most two values of b, where $\Delta(\theta, \varepsilon) = \{z : \theta - \varepsilon < \arg z < \theta + \varepsilon\}$. A direction $\arg z = \theta$ is called a precise T direction of f(z), if in (1.2), $N(r, \Delta(\theta, \varepsilon), f = b)$ is replaced by $\overline{N}(r, \Delta(\theta, \varepsilon), f = b)$.

Later, Yuan, Qi and Seiki Mori [9] made some discussion on the T direction and Nevanlinna direction (see [9] for its definition) of some Schröder functions. And they got the following theorem.

Theorem B. Let f(z) be a meromorphic solution of the Schröder equations f(sz) = R(f(z)), where

¹⁹⁹¹ Mathematics Subject Classification. Primary 30D10; Secondary 30D20, 30B10, 34M05.

^{*)} Department of Mathematical Sciences, Tsinghua University, Beijing, 100084, People's Republic of China.

^{**)} Basic Department, Beijing Union University, No. 97, Bei Si Huan Dong Road, Chaoyang District, Beijing, 100101, People's Republic of China.

|s| > 1 and R(w) is a rational function with deg $[R] \ge 2$. If $\arg[s]/2\pi \notin Q$, then f(z) has any direction as precise T direction and Nevanlinna direction as well.

According to the Hayman inequality (see [5]) on the estimation of T(r, f) in terms of only two integrated counting functions for the roots of f(z) = aand $f^{(k)}(z) = b$ with $b \neq 0$, Guo, Zheng and Ng proposed in [4] a singular direction named Hayman Tdirection as follows:

Definition 1.2. Let f(z) be a transcendental meromorphic function. A direction $\arg z = \theta$ is called a Hayman T direction of f(z) if for any small $\varepsilon > 0$, any positive integer k and any complex numbers a and $b \neq 0$, we have

$$\limsup_{r\to\infty}\frac{N(r,\Delta(\theta,\varepsilon),f=a)+N(r,\Delta(\theta,\varepsilon),f^{(k)}=b)}{T(r,f)}>0.$$

Most recently, Zheng and Wu [15] discussed the existence of Hayman T directions of meromorphic functions and they proved the following

Theorem C. Let f(z) be a transcendental meromorphic function satisfying

(1.3)
$$\limsup_{r \to \infty} \frac{T(r, f)}{(\log r)^3} = +\infty.$$

Then f(z) has a Hayman T direction which is a T direction as well.

Remark 1. In the same paper, the authors gave an example to show the growth condition (1.3) is sharp. And they pointed out the Hayman T direction is different from the T direction.

It is interesting to investigate the Hayman T directions of the Schröder functions. We will obtain Theorem 1.1.

Theorem 1.1. Let f(z) be a meromorphic solution of the Schröder equations f(sz) = R(f(z)), where |s| > 1 and R(w) is a rational function with $\deg[R] \ge 2$. If $\arg[s]/2\pi \notin Q$, then f(z) has any direction as Hayman T direction.

G. Valirion is the first one to introduce the concept of a proximate order $\lambda(r)$ for a meromorphic function f with finite positive order and the type function $U(r) = r^{\lambda(r)}$. And the following result is well known.

Proposition 1.1. Let T(r, f) be the Nevanlinna characteristic function of f(z) with order

$$\lambda(f) = \limsup_{r \to \infty} \frac{\log T(r, f)}{\log r} < \infty.$$

Then there exists a function $\lambda(r)$ with the following properties

- (1) $\lambda(r)$ is monotone and piecewise continuous differentiable function for $r \ge r_0$, with $\lim \lambda(r) = \lambda$;
- (2) $\lim \lambda'(r)r\log r = 0;$

(3)
$$\limsup_{r \to \infty} \frac{T(r, f)}{U(r)} = 1$$

(4) for each positive number d,

$$\lim_{r \to \infty} \frac{U(dr)}{U(r)} = d^{\lambda}, \quad U(r) = r^{\lambda(r)}.$$

The proof can be found in Chuang [3]. In 1932, G. Valiron raised in terms of his type function the concept of one Borel direction of maximal kind, which is a direction such that for any small $\varepsilon > 0$, and any $a \in \hat{\mathbf{C}}$, possibly except at most two values of a, we have

$$\limsup_{r\to\infty}\frac{n(r,\Delta(\theta,\varepsilon),f=a)}{U(r)}>0.$$

In 1983, Pang [11] studied the U type directions of meromorphic functions, and he obtained a theorem as follows:

Theorem D. Let f(z) be a meromorphic function with order $0 < \lambda < \infty$, $\lambda(r)$ be its proximate order, $U(r) = r^{\lambda(r)}$, then there exists an half line B: $\arg z = \theta$, for any meromorphic function a(z), such that T(r, a(z)) = o(U(r)), for any $\varepsilon > 0$, we have

$$\limsup_{r\to\infty}\frac{n(r,\Delta(\theta,\varepsilon),f=a(z))}{U(r)}>0$$

with at most two exceptional functions.

From this, we should elicit the concept of the precise maximal Borel direction dealing with small functions.

Definition 1.3. Let f(z) be a transcendental meromorphic function. A direction $\arg z = \theta$ is called a precise Borel direction of maximal kind of f(z) if for any small $\varepsilon > 0$, for any small functions a(z)such that T(r, a(z)) = o(U(r)) as $r \to \infty$, we have

$$\limsup_{r \to \infty} \frac{\overline{n}(r, \Delta(\theta, \varepsilon), f = a(z))}{U(r)} > 0$$

with at most two exceptions.

What is the case for meromorphic solutions of the Schröder equations? Next, we will prove Theorem 1.2.

Theorem 1.2. Let f(z) be a meromorphic solution of the Schröder equations f(sz) = R(f(z)), where |s| > 1 and R(w) is a rational function with $\deg[R] \ge 2$. If $\arg[s]/2\pi \notin Q$, then f(z) has any direction as precise Borel direction of maximal kind dealing with small functions, here the small function a(z) is defined as T(r, a) = o(U(r)).

Remark 2. Obviously, the precise Borel direction of maximal kind must be the precise T direction, so we have obtained the existence of the precise T directions of the Schröder functions dealing with small functions, here the small function a(z) is defined as T(r, a) = o(T(r, f)).

2. Some lemmas. First, let us recall Ahlfors-Shimizu characteristic in an angle (see [10]). Let f(z) be a meromorphic function on an angle $\Omega = \{z : \alpha \leq arg \ z \leq \beta\}$. Set $\Omega(r) = \Omega \cap \{z : 1 < |z| < r\}$. Define

$$\mathcal{S}(r,\Omega,f) = \frac{1}{\pi} \iint_{\Omega(r)} \left(\frac{|f'(z)|}{1+|f(z)|^2} \right)^2 d\sigma$$

and

$$\mathcal{T}(r,\Omega,f) = \int_{1}^{r} \frac{\mathcal{S}(t,\Omega,f)}{t} dt.$$

In order to prove our theorems, we need the following lemmas.

Lemma 2.1 [5]. Let f(z) be a meromorphic function in the whole complex plane **C**. Then

$$|T(r, f) - \mathcal{T}(r, \mathbf{C}, f) - \log^+ |f(0)|| \le \frac{1}{2} \log 2.$$

Lemma 2.2 [8]. Let f(z) be a Schröder function of (1.1) with order λ . Then it holds that

$$K_1 r^{\lambda} \leq \mathcal{T}(r, \mathbf{C}, f) \leq K_2 r^{\lambda}$$

for some constants $0 < K_1 \le K_2$, $\lambda = \log p / \log |s| > 0$.

Lemma 2.3 [8]. Let R(w) be a rational function, and f(z) be a meromorphic function on $\Omega(\alpha, \beta)$, then for a constant L > 0, we have

$$\mathcal{T}(r,\Omega,R(f)) \le L\mathcal{T}(r,\Omega,f).$$

The following lemma is a theorem in [15], which is to control the term $\mathcal{T}(r, \Omega_{\varepsilon})$ with the counting functions $N(r, \Omega, f = a)$ and $N(r, \Omega, f^{(k)} = b)$.

Lemma 2.4. Let f(z) be meromorphic in an angle $\Omega = \{z : \alpha \leq \arg z \leq \beta\}$. Then for any small $\varepsilon > 0$, any positive integer k and any two complex numbers a and $b \neq 0$, we have

$$\begin{split} \mathcal{T}(r,\Omega_{\varepsilon},f) &\leq K\{N(2r,\Omega,f=a) \\ &+ N(2r,\Omega,f^{(k)}=b)\} + O(\log^3 r) \end{split}$$

for a positive constant K depending only on k, where $\Omega_{\varepsilon} = \{ z : \alpha + \varepsilon < \arg z < \beta - \varepsilon \}.$

The following lemma is the second fundamental theorem for the case of a meromorphic function of slow growth, which is Theorem VII.3 in [10].

Lemma 2.5 [10]. Let f(z) be meromorphic in an angular domain Ω . Then for any small $\varepsilon > 0$ and three distinct points a_i (j = 1, 2, 3) on $\hat{\mathbf{C}}$, we have

$$\mathcal{T}(r,\Omega_{\varepsilon},f) \leq 3\sum_{j=1}^{3}\overline{N}(2r,\Omega,f=a_j) + O(\log^2 r)$$

for r > 1.

The following lemma is applicable in the discussion of angular distribution of a meromorphic function dealing with small functions, which is Theorem VIII in [10].

Lemma 2.6 [10]. Let f(z) and $a_j(z)$ (j = 1, 2, 3, 4) be meromorphic functions in the complex plane and

$$g(z) = \frac{a_1(z)f(z) + a_2(z)}{a_3(z)f(z) + a_4(z)}.$$

Consider an angle $\Omega(\alpha, \beta)$ with $0 < \beta - \alpha \le 2\pi$, then for any $\varepsilon > 0$, we have

$$\begin{aligned} \mathcal{T}(r,\Omega_{\varepsilon},g) &\leq 27\mathcal{T}(64r,\Omega,f) \\ &+ O\bigg(\int_{1}^{r} \frac{1}{t} \int_{1}^{128t} \frac{T(s,a)}{s} ds dt\bigg), \end{aligned}$$

where $T(r, a) = \sum_{j=1}^{4} T(r, a_j)$.

The following lemma is Lemma 1.1.2 in [13], which is useful for our study.

Lemma 2.7. Let T(r) be a non-negative and non-decreasing function in $0 < r < \infty$. If

$$\liminf_{r \to \infty} \frac{T(dr)}{T(r)} \ge c > 1$$

for some d > 1, then

$$\int_{1}^{r} \frac{T(t)}{t} dt \le \frac{2c \log d}{c - 1} T(r) + O(1).$$

By Lemma 2.7, we can establish the following result.

Lemma 2.8. Let f(z) be a meomorphic function on the whole plane with order λ , and U(r) be its type function, if there exists a direction $\arg z = \theta$ such that for any $\varepsilon > 0$, the following holds

$$\limsup_{r \to \infty} \frac{\overline{N}(r, \Delta(\theta, \varepsilon), f = a)}{U(r)} > 0$$

with at most two values for exception, then $\arg z = \theta$ must be a precise Borel direction of maximal kind of f(z).

Proof. If the result is not true, then there exist three complex numbers a_1, a_2, a_3 such that

$$\overline{n}(r, \Delta(\theta, \varepsilon), f = a_i) = o(U(r)),$$

then by Lemma 2.7, we have

$$\overline{N}(r,\Delta(\theta,\varepsilon), f = a_i) = o\left(\int_1^r \frac{U(t)}{t} dt\right) = o(U(r)).$$

This leads a contradiction.

Lemma 2.9. If $a_i(z)$ (i = 1, 2, 3, 4) be four small functions such that $T(r, a_i) = o(U(r))$, then we have

$$\int_{1}^{r} \frac{1}{t} \int_{1}^{128t} \frac{T(s,a)}{s} ds dt = o(U(r)),$$

where $T(r, a) = \sum_{j=1}^{4} T(r, a_j)$.

The proof of Lemma 2.9 is similar to Lemma 2.8, and we omit it.

3. Proof of Theorem 1.1.

Proof. We have known that the Schröder function f(z) of (1.1) satisfies that

$$K_1 r^{\lambda} \leq \mathcal{T}(r, \mathbf{C}, f) \leq K_2 r^{\lambda}.$$

Dividing **C** into two sectors $\Omega_1 = \Delta(0, \frac{\pi}{2})$ and $\Omega_2 = \Delta(\pi, \frac{\pi}{2})$, we obtain that

$$\mathcal{T}(r,\Omega_j,f) \ge \frac{K_1}{2}r^{\lambda}, \quad for \quad j=1 \quad or \quad j=2.$$

When it holds for j (say j = 1), we divide Ω_1 into two sectors. Repeating this procedure, we get a direction arg $z = \theta^*$ such that, for $\Delta_n^* = \Delta(\theta^*, \frac{2\pi}{2n})$, and we have

$$\mathcal{T}(r, \Delta_n^*, f) \ge \frac{K_1}{2^n} r^{\lambda}$$

for any $n \in N$. Take any direction $\arg z = \theta_0$ and a sector $\Delta(\theta_0, \varepsilon)$. Choose a n_0 such that $\frac{2\pi}{2^{n_0}} < \frac{\varepsilon}{8}$. Thus there is a j_0 such that $j_0 > n_0$ and $|(\theta_0 + j_0 \arg s) - \theta^*| < \frac{\varepsilon}{8} \pmod{2\pi}$. By (1.1), we obtain that $f(z) = R^{j_0}(f(s^{-j_0}z))$, where $R^{j_0}(w)$ is the j_0 -th iteration of R(w). Thus by Lemma 2.3, with some constant $L(j_0)$,

(3.1)
$$\begin{aligned} \mathcal{T}(r, \Delta_{j_0}^*, f) &= \mathcal{T}(r, \Delta_{j_0}^*, R^{j_0}(f(s^{-j_0}z))) \\ &\leq L(j_0) \mathcal{T}\Big(|s|^{-j_0}r, \Delta\Big(\theta_0, \frac{\varepsilon}{4}\Big), f\Big). \end{aligned}$$

Suppose that the direction arg $z = \theta_0$ does not satisfy the property, then there exist $a \in \mathbf{C}$, and $b \neq 0$, $b \in \mathbf{C}$, such that

$$N(2r, \Delta(\theta_0, \varepsilon), f = a) + N(2r, \Delta(\theta_0, \varepsilon), f^{(k)} = b)$$

= $o(\mathcal{T}(2r, \mathbf{C}, f)).$

By Lemma 2.4, we have

$$\mathcal{T}\left(r,\Delta\left(\theta_{0},\frac{\varepsilon}{2}\right),f\right) = o(\mathcal{T}(2r,\mathbf{C},f)) \quad as \ r \to \infty.$$

Hence

 \square

$$\begin{split} \frac{K_1}{2^{j_0}} r^{\lambda} &\leq \mathcal{T}(r, \Delta_{j_0}^*, f) \leq L(j_0) \mathcal{T}\left(|s|^{-j_0} r, \Delta\left(\theta_0, \frac{\varepsilon}{4}\right), f\right) \\ &\leq L(j_0) \mathcal{T}\left(|s|^{-j_0} r, \Delta\left(\theta_0, \frac{\varepsilon}{2}\right), f\right) \\ &= o(\mathcal{T}(2|s|^{-j_0} r, \mathbf{C}, f)) = o(K_2(2|s|^{-j_0} r)^{\lambda}), \\ &as \ r \to \infty \end{split}$$

This is impossible. Thus f(z) has any direction as Hayman T direction. The proof is completed. \Box **4. Proof of Theorem 1.2.**

Proof. We will use Lemma 2.5, Lemma 2.6, Lemma 2.8 and Lemma 2.9 to prove our theorem.

We have known that the Schröder function f(z) of (1.1) satisfies that

$$K_1 r^{\lambda} \leq \mathcal{T}(r, \mathbf{C}, f) \leq K_2 r^{\lambda}.$$

Let U(r) be the type function of T(r, f), then we have

$$\limsup_{r \to \infty} \frac{\mathcal{T}(r, \mathbf{C}, f)}{U(r)} > 0.$$

Dividing **C** into two sectors $\Omega_1 = \Delta(0, \frac{\pi}{2})$ and $\Omega_2 = \Delta(\pi, \frac{\pi}{2})$, we obtain that

$$\limsup_{r \to \infty} \frac{\mathcal{T}(r, \Omega_j, f)}{U(r)} > 0 \quad for \quad j = 1 \quad or \quad j = 2.$$

When it holds for j (say j = 1), we divide Ω_1 into two sectors. Repeating this procedure, we get a direction arg $z = \theta^*$ such that, for $\Delta_n^* = \Delta(\theta^*, \frac{2\pi}{2^n})$, and we have

(4.1)
$$\limsup_{r \to \infty} \frac{\mathcal{T}(r, \Delta_n^*, f)}{U(r)} > 0,$$

for any $n \in N$. Take any direction $\arg z = \theta_0$ and a sector $\Delta(\theta_0, \varepsilon)$. Choose a n_0 such that $\frac{2\pi}{2^{n_0}} < \frac{\varepsilon}{8}$. Thus there is a j_0 such that $j_0 > n_0$ and $|(\theta_0 + j_0 \arg s) - \theta^*| < \frac{\varepsilon}{8} \pmod{2\pi}$. By (1.1), we obtain that $f(z) = R^{j_0}(f(s^{-j_0}z))$, where $R^{j_0}(w)$ is the j_0 -th iteration of R(w). Thus by Lemma 2.3, with some constant $L(j_0)$,

$$\mathcal{T}(r, \Delta_{j_0}^*, f) \leq L(j_0) \mathcal{T}\Big(|s|^{-j_0} r, \Delta\Big(\theta_0, \frac{\varepsilon}{4}\Big), f\Big).$$

Suppose that the direction arg $z = \theta_0$ does not satisfy the property, then there exist three distinct small functions $a_i(z), i = 1, 2, 3$ such that

(4.2)
$$\overline{N}(r, \Delta(\theta_0, \varepsilon), f = a_i) = o(U(r)).$$

Set

$$g(z) = \frac{f(z) - a_1(z)}{f(z) - a_2(z)} \frac{a_3(z) - a_2(z)}{a_3(z) - a_1(z)},$$

then

$$f(z) = \frac{h_1(z)g(z) + h_2(z)}{h_3(z)g(z) + h_4(z)},$$

where

$$egin{aligned} h_1 &= a_3(a_2-a_1), h_2 &= a_1(a_3-a_2), \ h_3 &= a_2-a_1, h_4 &= a_3-a_2, \end{aligned}$$

so that $T(r, h_i) = O(\sum_{j=1}^3 T(r, a_j))$ (i = 1, 2, 3, 4). Since $\sum_{j=1}^3 T(r, a_j) = o(U(r))$, in view of Lemma 2.6 and Lemma 2.9, we have

$$\mathcal{T}\left(r, \Delta\left(\theta_0, \frac{\varepsilon}{2}\right), f\right) \le 27\mathcal{T}\left(64r, \Delta\left(\theta_0, \frac{2\varepsilon}{3}\right), g\right) + o(U(r)).$$

Then in view of Lemma 2.5, we have

$$\begin{split} \mathcal{T}\Big(r, \Delta\Big(\theta_0, \frac{\varepsilon}{2}\Big), f\Big) &\leq 27\mathcal{T}\left(64r, \Delta\Big(\theta_0, \frac{2\varepsilon}{3}\Big), g\Big) \\ &\quad + o(U(r)) \\ &\leq 81\Big[\overline{N}\Big(128r, \Delta\Big(\theta_0, \frac{3\varepsilon}{4}\Big), g = 0\Big) \\ &\quad + \overline{N}\Big(128r, \Delta\Big(\theta_0, \frac{3\varepsilon}{4}\Big), g = 1\Big) \\ &\quad + \overline{N}\Big(128r, \Delta\Big(\theta_0, \frac{3\varepsilon}{4}\Big), g = \infty\Big)\Big] \\ &\quad + o(U(r)) \\ &= 81\sum_{j=1}^3 \overline{N}\Big(128r, \Delta\Big(\theta_0, \frac{3\varepsilon}{4}\Big), f = a_j\Big) \\ &\quad + o(U(r)). \end{split}$$

Notice (4.2) and (4) in Proposition 1.1, we have

$$\mathcal{T}\left(r,\Delta\left(\theta_{0},\frac{\varepsilon}{2}\right),f\right) = o(U(r)) \quad as \ r \to \infty.$$

Hence

$$\begin{split} \mathcal{T}(r,\Delta_{j_0}^*,f) &\leq L(j_0)\mathcal{T}\Big(|s|^{-j_0}r,\Delta\Big(\theta_0,\frac{\varepsilon}{4}\Big),f\Big) \\ &\leq L(j_0)\mathcal{T}\Big(|s|^{-j_0}r,\Delta\Big(\theta_0,\frac{\varepsilon}{2}\Big),f\Big) \\ &= o(U(|s|^{-j_0}r)) = o(U(r)) \quad as \ r \to \infty. \end{split}$$

This contradicts (4.1). Thus the direction arg $z = \theta_0$

is precise Borel direction of maximal kind dealing with small functions. $\hfill \Box$

5. Conclusion. We can see that the Schröder function is a good meromorphic function that if $\arg[s]/2\pi \notin Q$, then f(z) has any direction as Borel direction, precise T direction, Nevanlinna direction, Hayman direction, Hayman T direction and precise Borel direction of maximal kind dealing with small functions. And we make a conclusion that any direction of f(z) must be a Marty direction, here a half line $z = \theta$ is a Marty direction if and only if for any $\varepsilon > 0$ and any real number k, we have

$$\sup_{\Omega} \frac{|z|^{k+1} |f'(z)|}{1+|z|^{2k} |f(z)|^2} = +\infty,$$

where $\Omega = \{z : 1 \leq |z| < +\infty, \theta - \varepsilon < \arg z < \theta + \varepsilon\}$. The definition of Marty direction was posed in [1, 2, 6]. In [6], Jin and Song have a result that if $\arg z = \theta_0$ is not a Marty direction of f(z), then there exists a positive number $\varepsilon > 0$ such that

$$\mathcal{T}(r, \Delta(\theta_0, \varepsilon), f) = O(\log^3 r).$$

However, this contradicts (3.1).

Acknowledgment. The work is supported by NSF of China (No. 10871108).

References

- J. Chang and G. Song, On singular directions of entire and meromorphic functions, Northeast. Math. J. 16 (2000), no. 4, 379–382.
- J.M. Chang, Value distribution of mermorphic functions without singular directions in an angular region, J. of Math. (PRC), 23 (2003), no. 3, 281–284. (in Chinese)
- [3] C.T. Chuang, Singular directions of a meromorphic function, Science Press of China, 1982. (in Chinese)
- [4] H. Guo, J.H. Zheng and T.W. Ng, On a new singular direction of meromorphic functions, Bull. Austral. Math. Soc. 69 (2004), no. 2, 277–287.
- [5] W.K. Hayman, Meromorphic functions, Clarendon Press, Oxford, 1964.
- [6] J.L. Jing and G.D. Song, The singular directions corresponding to Marty's criterion, J. East China Norm. Univ. Natur. Sci. Ed. 1999, no. 4, 33–37.
- [7] K. Ishizaki and N. Yanaihara, Borel and Julia directions of meromorphic Schröder functions, Math. Proc. Camb. Phil. Soc., 139 (2005), 139–147.
- [8] K. Ishizaki and N. Yanagihara, Borel and Julia directions of meromorphic Schröder functions. II, Arch. Math. (Basel) 87 (2006), no. 2, 172–178.
- [9] W.J. Yuan, J.M. Qi and Seiki Mori, Singular di-

rections of meromorphic solutions of some nonautonomous Schröder equations, in the 15th International Conference on Finite or Infinite Dimensional Complex Analysis and Applications (Osaka, 2007), Complex Analysis and its Applications, **2**, OMUP, Osaka, 2008.

- [10] M. Tsuji, Potential theory in modern function theory, Maruzen, Tokyo, 1959.
- [11] X. C. Pang, On singular directions of meromorphic functions, Adv. in Math. (Beijing) 16 (1987), no. 3, 309–315.
- [12] L. Yang, Value Distribution And New Research, Springer-Verlag, Berlin, 1993.
- [13] J.H. Zheng, Value Distribution of Meromorphic Functions. (Preprint).
- [14] J. Zheng, On transcendental meromorphic functions with radially distributed values, Sci. China Ser. A 47 (2004), no. 3, 401–416.
- [15] J.H. Zheng and N. Wu, Hayman T directions of meromorphic functions. (to appear)