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Abstract: In this paper we announce fundamental results of the Ruelle zeta function for

odd dimensional hyperbolic manifolds with cusps; the meromorphic extension over C, its

functional equation and the singularity at s ¼ 0.
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1. Introduction. Let us consider an odd

dimensional noncompact hyperbolic manifold

X� ¼ �nSO0ð2nþ 1; 1Þ=SOð2nþ 1Þ

where � is a cofinite discrete subgroup of G ¼
SO0ð2nþ 1; 1Þ and K ¼ SOð2nþ 1Þ is a maximal

compact subgroup of SO0ð2nþ 1; 1Þ. Throughout

this paper, we assume that the group generated

by the eigenvalues of � contains no root of unity. Its

consequences are that � is torsion free and

� \ P ¼ � \N

for a �-cuspidal minimal parabolic subgroup P and

a Langlands decomposition P ¼ MAN where M ¼
SOð2nÞ � K ¼ SOð2nþ 1Þ. Then X� has a negative

constant curvature with respect to the metric

induced from the Killing form over the Lie algebra

of G.

Let � be a finite-dimensional unitary represen-

tation of �1ðX�Þ ¼ �. For such a manifold X� and �,

the Ruelle zeta function R�ðsÞ is defined by

R�ðsÞ :¼
Y
�

det Id� �ð�Þe�s l�
� ��1

for <ðsÞ > 2n. Here the product is given over the

�-conjugacy classes of the primitive hyperbolic

element � in �, the determinant denoted by det is

taken over the representation space V� of �, and l�
denotes the length of the prime geodesic determined

by �. The fundamental questions for R�ðsÞ are its

meromorphic extension over C and functional

equation. These questions could be answered by

proving the corresponding properties of the Selberg

zeta function Z�ð�; sÞ where Z�ð�; sÞ is attached to a

representation � of M ¼ SOð2nÞ. For this, we need

to analyze all the terms in Selberg trace formula

and such a analysis has been available for compact

hyperbolic manifold X�. Hence the above questions

for R�ðsÞ can be easily answered and solutions have

been well known now for compact X�. For instance,

see [3] for even dimensional case which is more

difficult case than odd dimensional case. In this

paper, we give the answers to these questions for

odd dimensional hyperbolic manifold with cusps.

For this, we also obtain the meromorphic extension

of Z�ð�; sÞ over C with precise information about

its zeros and poles and the functional equation of

Z�ð�; sÞ for odd dimensional hyperbolic manifold

with cusps.

2. Results for Z�ð�; sÞ. Let us recall the

definition of the Selberg zeta function Z�ð�; sÞ,

Z�ð�; sÞ :¼ exp

 
�
X
�

��ð�Þ��ðm�Þ
j� Dð�Þ e�ðs�nÞl�

!
defined for <ðsÞ > 2n. Here the sum is given over

the �-conjugacy classes of the hyperbolic element �

in �, l� denotes the length of the closed geodesic

determined by � and j� is the positive integer such

that � ¼ �
j�
0 for a primitive hyperbolic element �0,

Dð�Þ ¼ en l� det Adðm�a�Þ�1 � Idjn
� ���� ���

for the element m�a� 2 MAþ which is conjugate to

� and ��; �� denote the characters of �, � respec-

tively. When M ¼ SOð2nÞ, the representation ring

of M is generated by the fundamental representa-

tion �k acting on ^kR2n �C for k ¼ 0; 1; . . . ; ðn� 1Þ
and the half spin representations �þ; �� acting on

^nR2n �C. We denote by dð�kÞ the dimension of

representation space of �k, ^kR2n �C for 0 � k �
n� 1 and by dð�nÞ the corresponding one of ��.
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To state our results of Z�ð�; sÞ for � ¼ �k

and �þ � ��, we need to introduce some notations.

First let �k be the fundamental representation of

K ¼ SOð2nþ 1Þ acting on V�k ¼ ^kR2nþ1 �C and

�k denote the Laplacian acting on the space of the

smooth sections of the locally homogeneous vector

bundle E�;�k ¼ V� �� G��k V�k . Since X� is noncom-

pact, we have the following decomposition

L2 X�; E�;�k

� �
¼ L2

d X�; E�;�k

� �
� L2

c X�; E�;�k

� �
:

Now the actions of ��k;i� �kð Þ and ��k�1;i� �kð Þ on

L2
d X�; E�;�k

� �
have the discrete eigenvalues of

the forms �jðkÞ2 þ ðn� kÞ2 and �jðk� 1Þ2 þ ðn�
kþ 1Þ2 respectively. This is also true if ð�k; kÞ is

replaced by ð��; nÞ. Here ��k;i� ¼ IndGMAN ð�k �
ei�þ� � 1NÞ is a non-unitary principal series repre-

sentation of G for �k 2 M̂M and � 2 C ’ LieðAÞ� �C.

If � 2 R then ��k;i� is called a unitary principal

series. Besides if i� 2 ½�ðn� kÞ; n� k	 and ��k;i� is

unitarizable then called a complementary series

representation. The spectral resolution of �k over

L2
c X�; E�;�k

� �
is determined by the scattering

operators Ck
�ð�k; sÞ and Ck

�ð�k�1; sÞ. These have the

matrix forms of size dcð�Þ where

dcð�Þ ¼
X�
j¼1

djð�Þ:

Here � denotes the number of cusps and djð�Þ
denotes the dimension of the maximal subspace of

V� over which �jPj\� acts trivially where P1; . . . ; P�

denote representatives of �-conjugacy classes of

�-cuspidal parabolic subgroups. Now for � ¼ ��,
the scattering matrix has the size 2 dcð�Þ since �� is

un-ramified and we denote this by Cn
� ð�n; sÞ. It is

well known that Ck
�ð�k; sÞ has the meromorphic

extension over C with poles for <ðsÞ < 0 and finitely

many real poles in the interval ð0; n	 and satisfies

the functional equation

Ck
�ð�k; sÞCk

�ð�k;�sÞ ¼ Id:

Now we can state our first result on the Selberg zeta

function.

Theorem 2.1. The Selberg zeta function

Z�ð�k; sÞ for 0 � k � n� 1 and Z�ð�þ; sÞZ�ð��; sÞ a

priori defined for <ðsÞ > 2n have the meromorphic

extensions over C with zeros at

. s ¼ n� i�jðkÞ of order mjðkÞ (of order 2mjðkÞ
if �jðkÞ ¼ 0), where �jðkÞ2 þ ðn� kÞ2 is an

eigenvalue of ��k;i� �kð Þ with multiplicity mjðkÞ,
. s ¼ nþ qj of order dð�kÞbj where detCk

�ð�k; sÞ

has a pole at s ¼ qj of order bj with <ðqjÞ < 0,

and poles at

. s ¼ k of order dcð�Þ eðn; kÞ where

eðn; kÞ :¼ ð�1Þkþ1

 Xn
j¼kþ1

ð�1Þjdð�jÞ
!

¼
2n� 1

k

� �
> 0

for 0 � k < n and eðn; nÞ :¼ 0,

. s ¼ n of order
1

2
dð�kÞtr

�
nð�kÞId� Ck

�ð�k; 0Þ
�
,

where nð�kÞ ¼ 1 for 0 � k < n and nð�nÞ ¼ 0.
. s ¼ n� qj of order dð�kÞbj where detCk

�ð�k; sÞ
has a pole at s ¼ qj of order bj with 0 < qj � n,

. s ¼ n� ‘ of order dcð�Þ dð�kÞ for ‘ 2 N�
fn� kg.

The proof of Theorem 2.1 follows from the

invariant form of the Selberg trace formula where

the non-invariant two terms combined into one

invariant term,

S�ð�k; sÞ ¼ Ck
�ð�k; sÞC�kð�k; sÞ�1

where C�kð�k; sÞ denotes the Harish-Chandra C-

function attached to ð�k; �kÞ. The zeros and poles of

Z�ð�k; sÞ can be stated in terms with S�ð�k; sÞ
instead of Ck

�ð�k; sÞ.
The second result on the Selberg zeta function

is its functional equation stated in the following

theorem.

Theorem 2.2. For s 2 C, the following

equalities hold for 0 � k � n� 1,

Z�ð�k; sÞ�ðs� nþ 1Þ�dcð�Þdð�kÞ


 ðs� kÞ�dcð�Þ dðn;kÞdetCk
�ð�k; 0Þdð�kÞ


 exp
�Z s�k

n�k

2Pn
k;�ðiðz� nþ kÞÞ dz

�
¼ Z�ð�k; 2n� sÞ�ðn� sþ 1Þ�dcð�Þ dð�kÞ


 ð2n� k� sÞ�dcð�Þ dðn;kÞ detCk
�ð�k; n� sÞdð�kÞ

where Pn
k;�ðzÞ is an even polynomial of z and

dðn; kÞ :¼ ð�1Þk
 Xn

j¼k

ð�1Þjdð�jÞ
!

� 0;

and

Z�ð�þ; sÞZ�ð��; sÞ�ðs� nþ 1Þ�2dcð�Þ dð�nÞ


 detCn
� ð�n; 0Þdð�nÞ exp

�Z s�n

0

2Pn
n;�ðizÞ dz

�
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¼ Z�ð�þ; 2n� sÞZ�ð��; 2n� sÞ

 �ðn� sþ 1Þ�2dcð�Þ dð�nÞ detCn

� ð�n; n� sÞdð�nÞ

where Pn
n;�ðzÞ is an even polynomial of z.

Theorem 2.1 and 2.2 are generalizations of

the results of Gangolli and Warner in [2] and

Wakayama in [9] to the case of the nontrivial locally

homogeneous vector bundle over noncompact

hyperbolic manifold with cusps. The result for

Z�ð�þ; sÞZ�ð��; sÞ with the trivial � has been also

obtained in [7] where its relation with the determi-

nant of the Dirac Laplacian is studied. The proofs

of Theorem 2.1 and 2.2 are applications of (the

invariant form of) the Selberg trace formula in [10]

and an explicit computation of the weighted uni-

potent orbital integral analyzed in [5] to our cases.

The details of proofs are given in [4].

3. Results for R�ðsÞ. Let us recall the

following equality which holds for <ðsÞ > 2n,

R�ðsÞ ¼
Y2n
k¼0

Z�ð�k; sþ kÞð�1Þkþ1

ð1Þ

where Z�ð�n; sþ nÞ ¼ Z�ð�þ; sþ nÞZ�ð��; sþ nÞ.
Combining this equality and Theorem 2.1, we can

easily obtain

Theorem 3.1. The Ruelle zeta function

R�ðsÞ defined a priori for <ðsÞ > 2n has the mer-

omorphic extension over C.

We can state explicitly poles and zeros of R�ðsÞ
using Theorem 2.1 and the equality (1). In partic-

ular, we can derive the order N0 of the singularity

of R�ðsÞ at s ¼ 0, that is, the integer such that

lims!0 s
N0R�ðsÞ is a nonzero finite value.

Theorem 3.2. The order N0 of the singular-

ity of R�ðsÞ at s ¼ 0 is

2
Xn
k¼0

ð�1Þkðnþ 1� kÞ	k þ
Xn�1

k¼0

ð�1Þkþ1dð�kÞbk

þ dcð�Þ
Xn
k¼1

ð�1Þk k dð�kÞ

where 	k :¼ dimkerð�kÞ and bk is the order of

singularity of detCk
�ð�k; sÞ at s ¼ n� k.

Theorem 3.2 is a generalization of Theorem 3

in [1,6] to the case of a noncompact hyperbolic

manifold with cusps X� where the second term

(the scattering contribution) and the third term

(the cuspidal contribution from the unipotent term)

appear. It is also easy to derive the functional

equation of R�ðsÞ from Theorem 2.2.

Theorem 3.3. The following functional

equation of Ruelle zeta function R�ðsÞ holds,
R�ð�sÞ ¼ R�ðsÞY ðn; sÞdcð�Þ


 detC�ðn; sÞ exp �Q�ðsÞ
� �

where

Y ðn; sÞ :¼ Y1ðn; sÞ Y2ðn; sÞ

with

Y1ðn; sÞ :¼
Yn�1

k¼0

sþ ðn� kÞ
s� ðn� kÞ

� �ð�1Þk aðn;kÞ

with

aðn; kÞ :¼ 2eðn; kÞ � dð�kÞ ¼
n� k

n
dð�kÞ

for 0 � k � n� 1 and

Y2ðn; sÞ :¼
Yn�1

k¼0

sþ 2ðn� kÞ
s� 2ðn� kÞ

� �ð�1Þk dðn;kÞ
;

C�ðn; sÞ :¼
Yn
k¼0

� eCC�ð�k; sÞ
�ð�1Þk dð�kÞ

witheCC�ð�k; sÞ :¼ Ck
�ð�k; n� k� sÞCk

�ð�k;�ðn� kÞ � sÞ

for 0 � k � n� 1 andeCC�ð�n; sÞ :¼ Cn
� ð�n;�sÞCn

� ð�n; 0Þ�1;

and

Q�ðsÞ :¼
Xn�1

k¼0

ð�1Þk
Z s

�s

2Pn
k;�ðiðz� nþ kÞÞdz

þ ð�1Þn
Z s

0

2Pn
n;�ðizÞdz:

Applications of Theorem 3.2 and 3.3 to the

relation with analytic torsion, which is a general-

ization of [1] to hyperbolic manifold with cusps, is

given in [8].
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