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A note on normality of meromorphic functions
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Abstract: Let F be a family of all functions f meromorphic in a domain D ⊂ C, for which,
all zeros have multiplicity at least k, and f(z) = 0 ⇔ f (k)(z) = 1 ⇒ |f (k+1)(z)| ≤ h, where k ∈ N
and h ∈ R+ are given. Examples show that F is not normal in general (at least for k = 1 or
k = 2). The example we give for k = 1 shows that a recent result of Y. Xu [5] is not correct.
However, we prove that for k �= 2, there exists a positive integer K ∈ N such that the subfamily
G = {f ∈ F : all possible poles of f in D have multiplicity at least K} of F is normal. This
generalizes our result in [1]. The case k = 2 is also considered.
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1. Introduction and main results. Let
D ⊂ C be a domain and F a family of meromor-
phic functions in D. F is said to be normal in D

in the sense of Montel, if each sequence {fn} ⊂ F
contains a subsequence which converges spherically
locally uniformly in D to a meromorphic function or
∞. See [3, 6].

The following result is due to X. C. Pang and L.
Zalcman [4].

Theorem A. Let k ∈ N and h ∈ R+, let F
be a family of functions meromorphic in a domain
D ⊂ C such that for any f ∈ F , all zeros of f have
multiplicity at least k, and f(z) = 0 ⇔ f (k)(z) =
1 ⇒ 0 < |f (k+1)(z)| ≤ h. Then F is a normal family
in D.

In [4], for k = 2, the authors gave an example
to show that in Theorem A, the condition f (k+1)(z)
is non-zero at the 1-points of f (k)(z) can not be
dropped even if F is a family of holomorphic func-
tions. Recently, Y. Xu [5] said that for k = 1, this
condition can be removed. We point out that Y. Xu’s
result is not correct. See the following example.

Example 1. For every n ∈ N, let

fn(z) =
2(enz + 1)
n(enz − 1)

.

Then, for any fn, we have

f ′
n(z)−1 = − (enz + 1)2

(enz − 1)2
, f ′′

n (z)−1 =
4nenz(enz + 1)

(enz − 1)3
,

so that fn satisfies fn(z) = 0 ⇔ f ′
n(z) = 1 ⇒

f ′′
n (z) = 0.
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However, the family F = {fn} is not normal in
C.

If the family F in Theorem A consists of holo-
morphic functions, then the condition f (k+1)(z) is
non-zero at the 1-points of f (k)(z) can be dropped
for k �= 2. Indeed, we have proved in [1] the following
two results.

Theorem B. Let k ∈ N and h ∈ R+, let F
be a family of functions holomorphic in a domain
D ⊂ C such that for any f ∈ F , all zeros of f have
multiplicity at least k, and f(z) = 0 ⇒ f (k)(z) =
1 ⇒ |f (k+1)(z)| ≤ h. For the case k = 2, suppose
in addition that there exists an even positive integer
s ≥ 4 such that for any f ∈ F , f (k)(z) = 1 ⇒
|f (s)(z)| ≤ h. Then F is a normal family in D.

Theorem C. Let k ∈ N with k ≥ 2 and h ∈
R+, let F be a family of functions holomorphic in
a domain D ⊂ C such that for any f ∈ F , f(z) =
0 ⇒ f ′(z) = 1 ⇒ |f (k)(z)| ≤ h. Then F is a normal
family in D.

In this note, we prove that Theorem B and The-
orem C are also valid if the family consists of mero-
morphic functions, all of whose poles have sufficiently
large multiplicity.

Theorem 1. Let k ∈ N and h ∈ R+,
let F be a family of all functions f mero-
morphic in a domain D ⊂ C, for which,
all zeros have multiplicity at least k, and
f(z) = 0 ⇒ f (k)(z) = 1 ⇒ |f (k+1)(z)| ≤ h. For the
case k = 2, suppose in addition that there exists an
even positive integer s ≥ 4 such that for any f ∈ F ,
f (k)(z) = 1 ⇒ |f (s)(z)| ≤ h. Then there exists an in-
teger K ∈ N such that the subfamily GK = {f ∈ F :
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all possible poles of f in D have multiplicity at least K}
of F is normal in D.

In Theorem 1, when k = 2, the additional con-
dition is really necessary.

Example 2 [4]. For every n ∈ N, let

fn(z) =
1

2n2
(enz + e−nz − 2) =

e−nz

2n2
(enz − 1)2.

Then for any positive integer j ∈ N,

f (j)
n (z) =

1
2
nj−2(enz + (−1)je−nz).

Thus one can see that all zeros of fn have multiplicity
at least 2, fn(z) = 0 ⇒ f ′′

n (z) = 1 and f ′′
n (z) = 1 ⇒

f (s)(z) = 0 for any odd positive integer s.
However, the family {fn} is not normal at z = 0.
Theorem 2. Let k ∈ N with k ≥ 2 and

h ∈ R+, let F be a family of all functions f mero-
morphic in a domain D ⊂ C, for which, f(z) = 0 ⇒
f ′(z) = 1 ⇒ |f (k)(z)| ≤ h. Then there exists an in-
teger K ∈ N such that the subfamily GK = {f ∈ F :
all possible poles of f in D have multiplicity at least K}
of F is normal in D.

By the present examples, the integer K must
be larger than 1. We conjecture that one may take
K = 2.

2. Lemmas. We require some known re-
sults. The first two are the well-known Marty’s the-
orem and Zalcman’s Lemma respectively.

Lemma 1 (see [3,6]). Let F be a family of
functions meromorphic in D. Then F is normal in
D if and only if for any compact subset E of D,
there exists a positive number M = M(E) such that
for any z ∈ E and any f ∈ F ,

f#(z) =
|f ′(z)|

1 + |f(z)|2 ≤ M.

Lemma 2 [4]. Let F be a family of functions
meromorphic in the unit disk D = {z : |z| < 1},
all of whose zeros have multiplicity at least k, and
suppose that there exists A ≥ 1 such that |f (k)(z)| ≤
A whenever f(z) = 0. Then if F is not normal, there
exist, for each 0 ≤ α ≤ k,

a) a number 0 < r < 1;
b) points zn, |zn| < r;
c) functions fn ∈ F ; and
d) positive numbers ρn → 0

such that ρ−α
n fn(zn + ρnζ) = gn(ζ) → g(ζ) spher-

ically locally uniformly, where g is a nonconstant
meromorphic function on C, all of whose zeros have

multiplicity at least k, such that g#(ζ) ≤ g#(0) =
kA + 1.

Lemma 3 [2]. Let f be an entire function. If
there exists a positive number M such that f#(z) ≤
M for any z ∈ C, then f is of order at most one.

Lemma 4 [1]. Let k ∈ N, let f be a noncon-
stant entire function of order at most one. Sup-
pose all zeros of f have multiplicity at least k, and
f(z) = 0 ⇒ f (k)(z) = 1 ⇒ f (k+1)(z) = 0. For
the case k = 2, suppose in addition that there exists
an even positive integer s ≥ 4 such that f (k)(z) =
1 ⇒ f (s)(z) = 0. Then f must be of the form
f(z) = 1

k! (z − z0)k, where z0 is a constant.
Lemma 5 [1]. Let k ∈ N with k ≥ 2, let f be

a nonconstant entire function of order at most one.
Suppose that f(z) = 0 ⇒ f ′(z) = 1 ⇒ f (k)(z) = 0.
Then f must be of the form f(z) = z − z0, where z0

is a constant.
Remark. In Lemma 4 (Lemma 5), the condi-

tion that f is of order at most one can be dropped,
since it follows from the other conditions. Indeed,
under the other conditions, by Theorem B (Theo-
rem C), the corresponding family {f(z + ζ)}z∈C is
normal at ζ = 0, and then by Marty’s theorem, the
spherical derivative f# of f is uniformly bounded on
C, and hence by Lemma 3, f is of order at most one.

3. Proofs of Theorem 1 and Theorem 2.
Since the proofs of Theorem 1 and Theorem 2 are
similar to each other, we only give the proof of The-
orem 1.

Proof of Theorem 1. Suppose for any K ∈
N, the family GK is not normal at some point zK ∈
D. Then by Zalcman’s Lemma (Lemma 2), there
exist points zn → zK , positive numbers ρn → 0 and
functions fn ∈ GK such that

gn(ζ) = ρ−k
n fn(zn + ρnζ) → Gk(ζ)

spherically locally uniformly, where GK is a noncon-
stant meromorphic function on C, all of whose zeros
have multiplicity at least k and all of whose poles
have multiplicity at least K, such that G#

K(ζ) ≤
G#

K(0) = k + 1.
Using the same argument in [1, P.334–336], we

can see that

GK(ζ) = 0 ⇒ G
(k)
K (ζ) = 1 ⇒ G

(k+1)
K (ζ) = 0,

with additional property G
(k)
K (ζ) = 1 ⇒ G

(s)
K (ζ) = 0

for the case k = 2.
Now we consider the family {GK}K∈N. Since

G#(ζ) ≤ k + 1, by Marty’s theorem, it is normal in
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the whole plane C. So there exists a subsequence
of {GK}K∈N, say itself without any loss of general-
ity, such that {GK}K∈N converges spherically locally
uniformly in C to a meromorphic function G or ∞.

By G#
K(ζ) ≤ G#

K(0) = k + 1, we see that
GK → G and G#(ζ) ≤ G#(0) = k + 1. Fur-
ther we can see that G is a nonconstant entire func-
tion, all zeros of G have multiplicity at least k, and
G(ζ) = 0 ⇒ G(k)(ζ) = 1 ⇒ G(k+1)(ζ) = 0 with
additional property G(k)(ζ) = 1 ⇒ G(s)(ζ) = 0
for the case k = 2. Thus by Lemma 4, we have
G(ζ) = 1

k! (ζ − ζ0)k, where ζ0 is a constant. Simple
calculation shows that G#(0) ≤ k

2 +1, which contra-
dicts G#(0) = k + 1.

The proof of Theorem 1 is completed.
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