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Estimates of the proximate function of differential polynomials

By Chung-Chun Yang∗) and Zhuan Ye∗∗)†)

(Communicated by Shigefumi Mori, m.j.a., April 12, 2007)

Abstract: We obtain a Clunie type theorem for a rather general form of functional equations
involving differential polynomials. Our theorems can give a much sharper estimate on the error
term of the proximity function of solutions of differential equations and functional equations than
the upper bound obtained by Clunie, Doeringer, He-Xiao, Korhonen and etc. In particular, our
theorem can also be applied to study various types of Painlevé differential equations.

Key words: Nevanlinna’s value distribution theory, differential polynomial, Painlevé equa-
tions.

1. Introduction. Let f denote a function
meromorphic on the complex plane. Nevanlinna the-
ory of meromorphic functions has played an impor-
tant role in the study of complex differential equa-
tions. One of the quantities that people always want
to know in solving a complex differential equation
is m(r, f), the proximity function of its solution. In
1960’s, J. Clunie [2] proved a lemma giving an esti-
mate of a proximity functions, which has numerous
applications to complex functional and differential
equations. Recently, Shimomura (e.g. see: [9, 10])
and Steinmetz [13] use this kind of lemma in their
studies in Painlevé differential equations. Since Clu-
nie’s work in 1960, there are several generalizations
based on the Clunie’s lemma. I. Laine called them
as Clunie type lemmas in his book [7, Lemmas 2.4.1-
2.4.5; pg.39-55]. In 2004, R. Korhonen [6] studied
Clunie type lemma and had a sharper estimate of
the error term in the Clunie’s lemma. In 2006, Ko-
rhonen [6] corrected several errors in his theorems in
[6] and improved an estimate of the error terms in
two Clunie type lemmas. In this paper, we derive
a better estimate on proximity functions than what
were obtained by Clunie [2], Doeringer [3], He-Xiao
[5] and Korhonen [6]. The general treatment of Clu-
nie type lemmas is to utilize a logarithmic derivative
lemma as in [2, 3, 5, 6]. Here we not only use a
modified version of Gol’dberg-Grinshtein’s logarith-
mic derivative lemma, but also treat every step with
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thorough analyses and technical calculations. The
technique used in this paper can be used to deal with
other kind of problems to get a better error term in
the case of seeking sharper upper bound. Our main
theorems enable one to derive, with easy, more pre-
cise estimates of the proximity functions m(r, f) and
m(r, 1/(f − a)), for any value a �= ∞, for many well-
known meromorphic functions such as exp z, sin z
and for meromorphic solutions f of various types of
Painlevé differential equations. Moreover, we also
show a sharper error term than that of Mohon’ko’s
result in [8].

2. Main results. Let n be a positive integer
and

P (z, f) =
n∑

k=0

pk(z)fk(z)

a polynomial of f with meromorphic function co-
efficients pk’s. Let Λ = {(λ0, λ1, · · · , λµ) :
λj is a non-negative integer and 0 ≤ j ≤ µ < ∞}
be an index set with a finite cardinal number and let

A∗(z, f) =
∑
λ∈Λ

aλ(z)fλ0(f ′)λ1 · · · (f (µ))λµ

be a polynomial of f and its derivatives with mero-
morphic coefficients aλ’s. Clearly, P (z, f) is a special
form of A∗(z, f). In the sequel, notation A∗(z, f),
an alphabet A with an asterisk, denotes a differ-
ential polynomial in general sense in f , while no-
tation A(z, f), an alphabet A without an asterisk,
denotes a polynomial of f with meromorphic coeffi-
cients. Denote the length of λ = (λ0, λ1, · · · , λµ) ∈ Λ

and the total degree of A∗(z, f) by |λ| =
µ∑

j=0

λj and

d(A∗) = maxλ∈Λ |λ|; and the weight length of λ and
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the weight degree of A∗(z, f) by w(λ) =
∑µ

j=1 jλj

and w(A∗) = maxλ∈Λ w(λ), respectively.
We begin with the Clunie’s lemma in the form

given by Laine [7].
Theorem A (Clunie). Let f be a transcenden-

tal meromorphic solution of

fnA∗(z, f) = B∗(z, f),

where A∗ and B∗ have meromorphic coefficients aλ

and bγ, respectively, with

m(r, aλ) = o(T (r, f)) and m(r, bγ) = o(T (r, f)).

If n ≥ d(B∗), then

m(r, A∗(z, f)) = o(T (r, f))

for all large r outside a set of a finite Lebesgue mea-
sure.

Theorem B (Korhonen). Suppose f satisfies
the equation in Theorem A with

A∗(z, f) =
∑
λ∈Λ

aλ(z)fλ0(f ′)λ1 · · · (f (p))λp and

B∗(z, f) =
∑
γ∈∆

bγ(z)fγ0(f ′)γ1 · · · (f (q))γq .

If n ≥ d(B∗), Then, there exists r0 such that

m(r, A∗(z, f)) ≤
∑

λ∈Λ

w(λ) +
∑
µ∈∆

w(µ)


 log+ ρT (ρ, f)

r(ρ − r)

+
∑

λ

m(r, aλ) +
∑

γ

m(r, bγ) +O(1)

for all r0 < r < ρ <∞.
Note the author in [6] has an explicit expression

of constant term in Theorem B.
Theorem C (He-Xiao). Let f be a transcen-

dental meromorphic solution of

P (z, f)A∗(z, f) = Q(z, f),

where all coefficients ps, qj and aλ of P , Q and
A∗ satisfy, m(r, ps) = m(r, 1/ps) = m(r, qs) =
m(r, aλ) = O(log(rT (r, f))). If d(P ) ≥ d(Q), then

m(r, A∗(z, f)) = o(T (r, f))

for all large r outside a set of a finite Lebesgue mea-
sure.

Theorem D (Mohon’ko). Let f be a transcen-
dental meromorphic solution of the differential equa-
tion

A∗(z, f) = 0

with polynomial coefficients. If there is a constant c
with A∗(z, c) �≡ 0, then

m(r, 1/(f − c)) = o(T (r, f))

as r → ∞ outside of a possible exceptional set of
finite Lebesgue measure.

The following is the main result in this paper.
Theorem 1. Suppose that f is a meromorphic

solution of the differential equation

P (z, f)A∗(z, f) = B∗(z, f).

If d(P ) ≥ d(B∗), then, there is a constant r0 such
that,

m(r, A∗(z, f)) ≤
max(w(A∗), w(B∗)) log+ ρT (ρ, f)

r(ρ − r)

+
∑

λ

m(r, aλ) +
∑

γ

m(r, bγ)

+ c
n−1∑
j=0

m(r, pj)
n− j

+


1 +

n∑
j=1

c

j


m(r, 1/pn)

+O(1),

for any ρ > r > r0, where c =
∑

λ |λ|.
Remark. The condition d(P ) ≥ d(B∗) in the

theorem is necessary. For example, f = sin z is a
solution of the differential equation f2 = 1 − (f ′)2.
We can take

P (z, f) = A∗(z, f) = f and B∗(z, f) = 1− (f ′)2.

Thus, d(P ) < d(B∗) and the conclusion of the theo-
rem is not true.

Let ψ and φ be increasing functions in (0,∞)
with ∫ ∞

e

dr

rψ(r)
<∞ and

∫ ∞

e

dr

φ(r)
= ∞.

Applying a growth lemma (e.g. see. [1, Pg. 99])
to Theorem 1, we have

Corollary 1. Under the assumptions of Theo-
rem 1, we have

m(r, A∗(z, f)) ≤
max(w(A∗), w(B∗)) log+ T (r, f)ψ(T (r, f))

φ(r)

+
∑

λ

m(r, aλ) +
∑

γ

m(r, bγ)
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+ c

n−1∑
j=0

m(r, pj)
n− j

+


1 +

n∑
j=1

c

j


m(r, 1/pn)

+O(1),

for all large r outside a set E with
∫

E
dr/φ(r) <∞.

By choosing a different ψ and φ, we can control
the upper bound of m(r, A∗(z, f)) and the excep-
tional set E. For instance, when we take ψ(r) = r

and φ(r) = 1, our Corollary 1 gives a better estimate
on the proximity function than those in Theorems A
and C.

As a by-product of these ideas, we also can im-
prove A. Mohon’ko and V. Mohon’ko’s result in [8]
as follows :

Theorem 2. Let f be a transcendental mero-
morphic solution of the differential equation

A∗(z, f) = 0.

If there is a constant c with A∗(z, c) �≡ 0, then, there
exists a positive constant r0 such that

m

(
r,

1
f − c

)
≤ w(A∗) log+ ρT (ρ, f)

r(ρ − r)

+m
(
r,

1
A∗(z, c)

)
+
∑

λ

m(r, aλ) +O(1),

for any ρ > r > r0.
Corollary 2. Under the assumptions of Theo-

rem 2, there is a positive constant r0 such that

m

(
r,

1
f − c

)
≤

w(A∗) log+ T (r, f)ψ(T (r, f))
φ(r)

+m
(
r,

1
A∗(z, c)

)
+
∑

λ

m(r, aλ) +O(1),

for all large r outside a set E with
∫

E

dr/φ(r) <∞.

We give some applications of Theorems 1 and 2
as follows :

Example 1. Let w(z) be a meromorphic solu-
tion of the fourth type Painlevé equation

ww′′ =
1
2
(w′)2 +

3
2
w4 + 4zw3 + 2(z2 − β)w + γ.

Rewrite it as(
3
2
w2 + 4zw

)
w2 = ww′′ − 1

2
(w′)2 − 2(z2 − β)w− γ

with P (z, w) =
3
2
w2 + 4zw, A∗(z, w) = w2 and

B∗(z, w) = ww′′ − 1
2 (w′)2 − 2(z2 − β)w− γ in Theo-

rem 1. Knowing that d(P ) = 2 = d(B∗), w(A∗) = 0,
w(B∗) = 2 and T (r, w) ≤ Cr4 in [9, 11, 13], we have,
from Theorem 1, that, for all large r,

m(r, w) ≤ 5 log r +O(1).

Korhonen [6, (8.3)] proves m(r, w) ≤ 15 log r+O(1).
In many references, one can only get m(r, w) ≤
O(log r). If γ �= 0, then, we obtain from Theorem
2 that for any complex number a, m(r, 1/(w− a)) ≤
9 log r +O(1). If γ = 0, then, for any non-zero com-
plex number a, m(r, 1/(w − a)) ≤ 9 log r +O(1).

Example 2. Let w(z) be a meromorphic so-
lution of the second type Painlevé equation w′′ =
2w3 + zw + α. Rewrite it as (2w)w2 = w′′ −
zw − α with P (z, w) = 2w, A∗(z, w) = w2 and
B∗(z, w) = w′′ − zw − α in Theorem 1. Knowing
that T (r, w) ≤ Cr3 in [9, 11, 13], we have, from
Theorem 1, that, m(r, w2) ≤ 4 log r + log r + O(1).
Therefore, m(r, w) ≤ 5

2 log r + O(1) for all large r.
Korhonen in [6] proves m(r, w) ≤ 5 log r + O(1)
and one gets m(r, w) = O(log r) before. If α �= 0,
then, we obtain from Theorem 2 that for any com-
plex number a, m(r, 1/(w − a)) ≤ 5 log r + O(1). If
α = 0, then, for any non-zero complex number a,
m(r, 1/(w − a)) ≤ 5 log r +O(1).

Example 3. We also can use Theorems 1 and
2 to estimate the proximate functions for many clas-
sical meromorphic functions, such as, ez, sin z, cos z,
tan z and etc. For instance, let f(z) = sin z. It satis-
fies the equations f2 − 1 + (f ′)2 = 0 and f ′′ + f = 0.
Recall that T (r, f) = 2r/π+O(1). For any complex
number a, applying Theorem 2 to f2 − 1 + (f ′)2 = 0
if a �= ±1 and to f ′′ + f = 0 if a = ±1, we have
m(r, 1/(sin z− a)) = O(1). This is much better than
m(r, 1/(sin z − a)) = O(log r) as stated in many ref-
erences.

3. Proofs of results. We need following
lemmas in our proofs.

Lemma 1. Let f be a non-constant mero-
morphic function in the complex plane. Let s be a
positive integer and α a positive real number with
0 < αs < 1/2. Then, there are two constants r0 > 1
and C = C(s, α, r0) such that, for all r0 < r < ρ,∫ 2π

0

∣∣∣∣f (s)

f
(reiθ)

∣∣∣∣
α
dθ

2π
≤ C

(
ρT (ρ, f)
r(ρ − r)

)sα

.

The lemma cited here is a simple version of the result
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of Z. Ye [14, Lemma 6]. The proof is based on a result
of Gol’dberg-Grinshtein [4].

Lemma 2. Let k be a positive integer and let f
be a meromorphic function and

gj = f (j)/f, //1 ≤ j ≤ k.

Assume that λj(1 ≤ j ≤ k) are non-negative inte-
gers. Then, for any β > 0 with 0 < β

∑k
j=1 jλj <

1/2, there are two positive constants r0 and C =
C(k,

∑k
j=1 λj , β, r0) such that, for all r0 < r < ρ,

∫ 2π

0

k∏
j=1

|gj|βλj
dθ

2π
≤ C

(
ρT (ρ, f)
r(ρ − r)

)β
�k

j=1 jλj

.

Proof. The Holder inequality and Lemma 1 give∫ 2π

0

k∏
j=1

|gj |βλj
dθ

2π
≤

k∏
j=1

(∫ 2π

0

|gj |βλjk dθ

2π

)1/k

≤ C
k∏

j=1

(
ρT (ρ, f)
r(ρ − r)

)βjλj

.

It follows the lemma is proved.
Proof of Theorem 1. Let

u(z) = max
1≤j≤n

(
1, 2

∣∣∣∣pn−j

pn

∣∣∣∣
1/j
)
.

Thus,

m(r, u) ≤
n−1∑
j=0

m(r, pj)
n− j

(1)

+


 n∑

j=1

1
j


m(r, 1/pn) +O(1).

Assume that, for any fixed r > 0, and z = reiθ ,

E = E(r) = {θ ∈ [0, 2π) : |f(z)| ≤ u(z)}
and F = F (r) = [0, 2π) \ E(r). Define χE(θ) = 1
when θ ∈ E; and otherwise χE(θ) = 0.

Noting for any α > 0 and xk ≥ 0, there is a posi-
tive constant C(α) such that (

∑
xk)α ≤ C(α)

∑
xα

k ,
we obtain, set gj = f (j)/f ,

|A∗(z, f)|α ≤(2)

C(α)
∑

λ


|aλf

λ0 |α
µ∏

j=1

|f (j)|λjα




= C(α)
∑

λ


|aλf

|λ||α
µ∏

j=1

|gj|λjα




≤ C(α)

(∑
λ

|aλf
|λ||2α

)1/2

∑

λ

µ∏
j=1

|gj |λj2α




1/2

.

So, for any θ ∈ E(r), we have

|A∗(z, f)|α ≤ C(α)

(∑
λ

|aλu
|λ||2α

)1/2

(3)


∑

λ

µ∏
j=1

|gj |λj2α




1/2

χE(θ).

For θ ∈ F (r), we get |f(z)| > u(z) ≥ 2|pn−j/pn|1/j

for j = 1, · · · , n. Thus,

|pn−j |
|pn| ≤ |f |j

2j
for j = 1, · · · , n.

Therefore,

|P (z, f)| ≥ |pn||f |n

1 −

n∑
j=1

|pn−j |
|f jpn|


 ≥ |pn||f |n

2n
.

Set hk = f (k)/f . Similar to the computation of (2),
and noting

|f(z)| > u(z) ≥ 1, for θ ∈ F (r); and d(P ) ≥ d(B∗),

we have, for any small α > 0,

|A∗(z, f)|α =
∣∣∣∣B∗(z, f)
P (z, f)

∣∣∣∣
α

(4)

≤
(

2n

|pn||f |n
∣∣∣∣∣
∑

γ

bγ(z)fγ0(f ′)γ1 · · · (f (ν))γν

∣∣∣∣∣
)α

≤
(

2n

|pn|
∑

γ

|bγ |
ν∏

k=1

|hk|γk

)α

≤ C(α)
(

2n

|pn|
)α∑

γ

(
|bγ |

ν∏
k=1

|hk|γk

)α

≤ C(α)
(

2n

|pn|
)α
(∑

γ

|bγ |2α

)1/2

∑
γ

(
ν∏

k=1

|hk|2αγk

)1/2

χF (θ).

Combining (3) and (4) gives

m(r, A∗) =(5)

1
α

∫ 2π

0

log+ |A∗(z, f)|α dθ
2π
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≤ 1
2α

∫ 2π

0

log+

(∑
λ

|aλu
|λ||2α

)
dθ

2π

+
1
2α

∫ 2π

0

log+

(∑
γ

|bγ |2α

)
dθ

2π

+
1
α

∫ 2π

0

log+

(
2n

|pn|
)α

dθ

2π
+O(1)

+
1
2α

∫ 2π

0

log+


∑

λ

µ∏
j=1

|gj |λj2α


χE(θ)

dθ

2π

+
1
2α

∫ 2π

0

log+
∑

γ

(
ν∏

k=1

|hk|2αγk

)
χF (θ)

dθ

2π

= I1 + I2 + I3 + I4 + I5 + O(1).

Therefore, we obtain

I1 ≤
∑

λ

m(r, aλ) +

(∑
λ

|λ|
)
m(r, u)(6)

+ O(1),

and,

(7) I2 + I3 ≤
∑

γ

m(r, bγ) +m(r, 1/pn) +O(1).

Now to estimate I4 and I5 together. Indeed, set

V (r, θ) =


∑

λ

µ∏
j=1

|gj|λj2α


χE(θ)

+


∑

γ

ν∏
j=1

|hj |γk2α


χF (θ),

then, by applying the concavity of log+ and Lemma
2, we have

I4 + I5 =
1
2α

∫ 2π

0

log+ V (r, θ)
dθ

2π
(8)

≤ 1
2α

log+

∫ 2π

0

V (r, θ)
dθ

2π

≤ 1
2α

log+

(∑
λ

(
ρT (ρ, f)
r(ρ− r)

)2α
�

jλj

+
∑

γ

(
ρT (ρ, f)
r(ρ − r)

)2α
�

kγk
)

+O(1)

≤ max(w(A∗), w(B∗)) log+ ρT (ρ, f)
r(ρ − r)

+O(1).

It follows from (6), (1), (7), (8) and (5) that the
theorem is proved.

Proof of Theorem 2. Without loss of the gen-
erality, we can assume that A∗(z, 0) �≡ 0, otherwise
we replace f by f − c. Thus, we may write

A∗(z, f) = a0(z) +
∑
|λ|≥1

aλ

µ∏
j=1

(f (j))λj

= a0 +B∗(z, f),

where a0(z) = A∗(z, 0) �≡ 0. Set E = E(r) = {θ ∈
(0, 2π] : |f(reiθ)| ≤ 1}. Therefore, for any small
α > 0, and noting A∗(z, f) ≡ 0, we have

m(r,
1
f

) =
∫

E

log+

∣∣∣∣ 1f
∣∣∣∣ dθ2π

=
1
α

∫
E

log+

∣∣∣∣B∗(z, f)
f

1
a0

∣∣∣∣
α
dθ

2π

≤ 1
α

log+


∑

|λ|≥1

∫
E


 µ∏

j=1

∣∣∣∣f (j)

f

∣∣∣∣
λj




α

dθ

2π




+ m

(
r,

1
a0

)
+
∑
|λ|≥1

m(r, aλ) +O(1).

The rest of proof of the theorem follows from
Lemma 2 as we have done in the proof of Theorem
1.
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of Painlevé transcendents, Funkcial. Ekvac. 46
(2003), no. 2, 287–295.

[ 11 ] S. Shimomura, Growth of the first, the second and
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