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Normal families and shared values of meromorphic functions
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Abstract: Let F be a family of meromorphic functions in a domain D, let q, k be two
positive integers, and let a, b be two non-zero complex numbers. If, for each f ∈ F , the zeros of
f have multiplicity at least k + 1, and f = a ⇔ G(f) = b, where G(f) = P (f (k)) + H(f) be a
differential polynomial of f satisfying q ≥ γH , and Γ

γ |H < k + 1, then F is normal in D.
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1. Introduction. Let f and g be meromor-
phic functions on a domain D, and let a and b be two
complex numbers. If g(z) = b whenever f(z) = a,
we write

f(z) = a ⇒ g(z) = b.

If f(z) = a ⇒ g(z) = b and g(z) = b ⇒ f(z) =
a, we write

f(z) = a ⇔ g(z) = b.

If f(z) = a ⇔ g(z) = a, we say that f and g
share a on D.

Let ai(z), (i = 1, 2, . . . , q − 1), bj(z), (j =
1, 2, . . . , n) be analytic in D, n0, n1, . . . , nk be non-
negative integers. Set

P (ω) = ωq + aq−1(z)ωq−1 + . . . + a1(z)ω,

M(f, f ′, . . . , f (k)) = fn0(f ′)n1 . . . (f (k))nk ,

γM = n0 + n1 + . . . + nk,

ΓM = n0 + 2n1 + . . . + (k + 1)nk.

M(f, f ′, . . . , f (k)) is called the differential mono-
mial of f , γM the degree of M(f, f ′, . . . , f (k)) and
ΓM the weight of M(f, f ′, . . . , f (k)).

Let Mj(f, f ′, . . . , f (k)), (j = 1, 2, . . . , n) be dif-
ferential monomials of f . Set

H(f, f ′, . . . , f (k)) = b1(z)M1(f, f ′, . . . , f (k)) + . . .

+bn(z)Mn(f, f ′, . . . , f (k)),

γH = max{γM1 , γM2 , . . . , γMn},
ΓH = max{ΓM1 , ΓM2 , . . . , ΓMn}.

H(f, f ′, . . . , f (k)) is called the differential poly-
nomial of f , γH the degree of H(f, f ′, . . . , f (k)) and
ΓH the weight of H(f, f ′, . . . , f (k)). Set
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G(f) = P (f (k)) + H(f, f ′, . . . , f (k)).

Schwick[1] was the first to draw a connection be-
tween values shared by functions in F and the nor-
mality of the family F . Specifically, he proved the
following theorem.

Theorem A. Let F be a family of meromorphic
functions in a domain D, and let a1, a2, a3 be three
distinct complex numbers. If, for each f ∈ F , f and
f ′ share a1, a2, a3, then F is normal in D.

Fang[2] proved the following theorem.
Theorem B. Let F be a family of meromorphic

functions in a domain D, let k be a positive integer,
and let a be a non-zero complex number. If, for each
f ∈ F , f �= 0, and f = a ⇔ f (k) = a , then F is
normal in D.

Fang and Zalcman[3] improved Theorem B as
follows:

Theorem C. Let F be a family of meromorphic
functions in a domain D, let k be a positive integer,
and let a, b be two non-zero complex numbers. If, for
each f ∈ F , the zeros of f have multiplicity at least
k + 1, and f = a ⇔ f (k) = b, then F is normal in
D.

In this paper, we extended Theorem C as fol-
lows:

Theorem 1. Let F be a family of meromorphic
functions in a domain D, let q, k be two positive inte-
gers, and let a, b be two non-zero complex numbers.
If, for each f ∈ F , the zeros of f have multiplic-
ity at least k + 1, and f = a ⇔ G(f) = b, where
G(f) = P (f (k)) + H(f) be a differential polynomial
of f satisfying q ≥ γH , and Γ

γ |H < k + 1, then F is
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normal in D.
As an application of Theorem 1, we have the

following example.
Example 1. Let k be a positive integer, let

fn(z) = nez, let F={fn(z) : n = 1, 2, . . .}, let D =
{z : |z| < 1}, and let G(f) = f (k). Then F be a
family of meromorphic functions in a domain D, for
each f ∈ F , f �= 0 and f = 1 ⇔ G(f) = 1. By
Theorem 1, we obtain that F is normal in D.

From Theorem 1, we can get
Corollary 2. Let F be a family of meromorphic

functions in a domain D, let a1(z), a2(z), . . . , ak(z)
be holomorphic functions in D, let k be a positive
integer, and let a, b be two non-zero complex num-
bers. If, for each f ∈ F , the zeros of f have multi-
plicity at least k + 1, and f = a ⇔ L(f) = b, where
L(f) = f (k)+a1(z)f (k−1)+a2(z)f (k−2)+. . .+ak(z)f ,
then F is normal in D.

2. Some Lemmas. For the proof of Theo-
rem 1, we need the following lemmas.

Lemma 1[4]. Let k be a positive integer, let
F be a family of functions meromorphic on the unit
disc �, all of whose zeros have multiplicity at least
k, and suppose that there exists A ≥ 1 such that
|f (k)(z)| ≤ A whenever f(z) = 0. Then if F is not
normal at z0, there exist, for each 0 ≤ α ≤ k,

a) points zn ∈ �, zn → z0;
b) functions fn ∈ F ; and
c) positive numbers ρn → 0

such that ρ−α
n fn(zn + ρnζ) = gn(ζ) → g(ζ) locally

uniformly with respect to the spherical metric, where
g is a nonconstant meromorphic function on C, all
of whose zeros have multiplicity at least k, such that
g#(ζ) ≤ g#(0) = kA + 1. In particular, g has order
at most 2.

Lemma 2[5]. Let f(z) be a meromorphic fuc-
tion of finite order in the plane, let k be a positive
integer, and let b be a non-zero complex number. If
the zeros of f(z) have multiplicity at least k +1 , the
poles are multiple, and f (k)(z) �= b, then f(z) is a
constant.

3. Proofs of Theorems 1. Without lose of
generality we assume that D = {|z| < 1}. Sup-
pose that F is not normal at point 0. Then by
Lemma 1, for α = k, there exist fj ∈ F , zj → 0,
and ρj → 0+ such that gj(ζ) = ρ−k

j fj(zj + ρjζ)
converges locally uniformly to a non-constant func-
tion g(ζ). Moreover, g(ζ) is of order at most 2
and only zeros of multiplicity at least k + 1. Set
Q(ω) = ωq + aq−1(0)ωq−1 + . . . + a1(0)ω,

We claim that:
(i) Q(g(k)) �= b;
(ii) the poles of g are multiple .
Suppose now that Q(g(k)(ζ0)) = b. we claim

that Q(g(k)) �≡ b. Otherwise, g must be a polynomial
of exact degree k , which contradicts the fact that
each zero of g has multiplicity at least k+1. Since
Q(g(k))(ζ0) = b. Obviously, g(ζ0) �= ∞. Hence there
exists δ > 0 such that g(ζ) is analytic on G2δ = {ζ :
|ζ−ζ0| < 2δ}. Thus g

(i)
j (ζ)(i = 0, 1, 2, . . . , k) are ana-

lytic on Gδ = {ζ : |ζ − ζ0| < δ} for large j and g
(i)
j (ζ)

converges uniformly to g(i)(ζ)(i = 0, 1, 2, . . . , k) on
Gδ = {ζ : |ζ − ζ0| ≤ δ}.

As

G(fj)(zj + ρjζ) − b = P (f (k)
j (zj + ρjζ))

+H(fj, f
′
j , . . . , f

(k)
j )(zj+ρjζ)

−b,

and

H(fj , f
′
j, . . . , f

(k)
j )(zj + ρjζ)

=
n∑

i=1

bi(zj + ρjζ)ρ(k+1)γMi
−ΓMi

j

×Mi(gj , g
′
j, . . . , g

(k)
j )(ζ).

Considering bi(z) are analytic on D (i =
1, 2, . . . , n), we have

|bi(zj + ρjζ)| ≤ M

(
1 + r

2
, bi(z)

)
< ∞,

(i = 1, 2, . . . , n)

for sufficiently large j.
Hence we deduce from Γ

γ |H < k + 1 that

n∑
i=1

bi(zj + ρjζ)ρ(k+1)γMi
−ΓMi

j Mi(gj , g
′
j , . . . , g

(k)
j )(ζ)

converges uniformly to 0 on D δ
2

= {ζ : |ζ − ζ0| < δ
2}.

Thus we know that G(fj)(zj +ρjζ)−b converges
uniformly to Q(g(k))− b on D δ

2
= {ζ : |ζ − ζ0| < δ

2}.
Hence, by Hurwitz’s theorem we deduce that

there exist ζj , ζj → ζ0 such that, for large j,

P (g(k)
j (ζj)) +

n∑
i=1

bi(zj + ρjζj)ρ
(k+1)γMi

−ΓMi

j

×Mi(gj , g
′
j, . . . , g

(k)
j )(ζj) = b.

Thus
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P (f (k)
j (zj+ρjζj))+H(fj, f

′
j , . . . , f

(k)
j )(zj+ρjζj) = b.

It follows from f = a ⇔ G(f) = b that

fj(zj + ρjζj) = a.

Thus

gj(ζj) =
fj(zj + ρjζj)

ρk
j

=
a

ρk
j

.

we have g(ζ0) = lim
n→∞ gj(ζj) = ∞, which contra-

dicts Q(g(k)(ζ0)) = b . This proves (i) .
Now we prove (ii). Suppose g(ζ0) = ∞. Since

g �≡ ∞, there exists a closed disc K = {ζ : |ζ −
ζ0| ≤ δ} on which 1/g and 1/gj are holomorphic
(for j sufficiently large) and 1/gj → 1/g uniformly.
Hence, 1/gj(ζ)−ρk

j /a → 1/g(ζ) on K, and since 1/g

is nonconstant, there exist ζj , ζj → ζ0, such that (for
j large enough)

1
gj(ζj)

− ρk
j

a
= 0.

Hence fj(zj + ρjζj) = a. Thus we have

P (f (k)
j (zj+ρjζj))+H(fj, f

′
j , . . . , f

(k)
j )(zj+ρjζj) = b.

Thus

P (g(k)
j (ζj))(1)

+
n∑

i=1

bi(zj + ρjζj)ρ
(k+1)γMi

−ΓMi

j

×Mi(gj , g
′
j, . . . , g

(k)
j )(ζj) = b.

We can get (
1
gj

)′
= − g′j

g2
j

,(2)

(
1
gj

)′′
= −g′′j

g2
j

+ 2
(g′j)

2

g3
j

,(3)

for k ≥ 3, mathematical induction shows that

(
1
gj

)(k)

= −g
(k)
j

g2
j

+ k!
(g′j)

k

gk+1
j

+
k−2∑
i=0

Aig
i
j,

Thus

g
(k)
j = g2

j

[
k!

(g′j)
k

gk+1
j

+
k−2∑
i=0

Aig
i
j −

(
1
gj

)(k)
]

.(4)

Thus by (1), (2), (3), (4) and q ≥ γH , we have

(k!)q

(
g′j(ζj)
g2

j (ζj)

)kq

g
(k+1)q
j (ζj)(5)

+
(k+1)q−1∑

i=0

Big
i
j(ζj) = b,

where Bi is a polynomial in (1/g)′, (1/g)′′, · · · ,
(1/g)(k).

Since lim
j→∞

gj(ζj) = ∞, by (5) we get

lim
j→∞


(k!)q

(
g′j(ζj)
g2

j (ζj)

)kq

g
(k+1)q−1
j (ζj)

+
(k+1)q−1∑

i=1

Big
i−1
j (ζj)


 = 0.

Similarly, we have

lim
j→∞


(k!)q

(
g′j(ζj)
g2

j (ζj)

)kq

g
(k+1)q−2
j (ζj)

+
(k+1)q−1∑

i=1

Big
i−2
j (ζj)


 = 0.

Proceeding inductively, we obtain

lim
j→∞

[
− g′j(ζj)

g2
j (ζj)

]k

= 0.

It follows that (1/g(ζ))′
∣∣
ζ=ζ0

= 0, so that ζ0 is
a multiple pole of g(ζ). Hence no pole of g is simple.
This proves (ii).

It follows Q(g(k)) �= b and the definition of
Q(ω) that there exist a non-zero constant c satis-
fying g(k) �= c. Hence by Lemma 2, we can deduce
that g is a constant, which is a contradiction. Hence
F is normal on D .
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