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Crystals and affine Hecke algebras of type D

By Masaki KASHIWARA® and Vanessa MIEMIETZ")

(Communicated by Heisuke HIRONAKA, M.J.A., Sept. 12, 2007)

Abstract:

The Lascoux-Leclerc-Thibon-Ariki theory asserts that the K-group of the

representations of the affine Hecke algebras of type A is isomorphic to the algebra of functions on
the maximal unipotent subgroup of the group associated with a Lie algebra g where g is gl or the
affine Lie algebra Aél), and the irreducible representations correspond to the upper global bases.
Recently, N. Enomoto and the first author presented the notion of symmetric crystals and
formulated analogous conjectures for the affine Hecke algebras of type B. In this note, we present
similar conjectures for certain classes of irreducible representations of affine Hecke algebras of
type D. The crystal for type D is a double cover of the one for type B.

Key words:

1. Introduction. Lascoux-Leclerc-Thibon ([3])
conjectured the relations between the representa-
tions of Hecke algebras of type A and the crystal
bases of the affine Lie algebras of type A. Then, S.
Ariki ([1]) observed that it should be understood
in the setting of affine Hecke algebras and proved
the LLT conjecture in a more general framework.
Recently, N. Enomoto and the first author presented
the notion of symmetric crystals and conjectured
that certain classes of irreducible representations of
the affine Hecke algebras of type B are described by
symmetric crystals ([2]).

The purpose of this note is to formulate and
explain conjectures on certain classes of irreducible
representations of affine Hecke algebras of type D
and symmetric crystals.

Let us begin by recalling the Lascoux-
Leclerc-Thibon-Ariki theory. Let Hf? be the affine
Hecke algebra of type A of degree n. Let Kﬁ
be the Grothendieck group of the abelian category
of finite-dimensional H2-modules, and K" =
D=0 Kﬁ. Then it has a structure of Hopf algebra
by the restriction and the induction functors. The
set I = C* may be regarded as a Dynkin diagram
with I as the set of vertices and with edges between
a € I and ap?. Here p is the parameter of the affine
Hecke algebra, usually denoted by . Let g; be the
associated Lie algebra, and g; the unipotent Lie

2000 Mathematics Subject Classification.
20C08; Secondary 20G05.

*) Research Institute for Mathematical Sciences, Kyoto
University, Kyoto 606-8502, Japan.

) Mathematisches Institut, Universitdt zu Koln, 50931
Koln, Germany.

Primary 17B37,

©2007 The Japan Academy

Crystal bases; affine Hecke algebras; LL'T conjecture.

subalgebra. Let U; be the group associated to g;.
Hence g; is isomorphic to a direct sum of copies of
Agl) if p? is a primitive ¢-th root of unity and to a
direct sum of copies of gl if p has an infinite order.
Then C ® K* is isomorphic to the algebra &'(U;) of
regular functions on U;. Let U,(g;) be the associated
quantized enveloping algebra. Then U, (g;) has an
upper global basis {G"(b)}cp (). By specializing
@ Clg, ¢ 1|G™(b) at ¢ = 1, we obtain &(Uy). Then
the LLTA theory says that the elements associated
to irreducible HA-modules corresponds to the image
of the upper global basis.

In [2], N. Enomoto and the first author gave
analogous conjectures for affine Hecke algebras of
type B. In the type B case, we have to replace
U, (9;) and its upper global basis with a new object,
the symmetric crystals. It is roughly stated as
follows. Let HE be the affine Hecke algebra of
type B of degree n. Let KE be the Grothendieck
group of the abelian category of finite-dimensional
modules over H? and K® = @,5¢K". Then K® has a
structure of a Hopf bimodule over K*. The group U;
has the anti-involution # induced by the involution
a— a ! of I = C". Let U? be the 6-fixed point set of
Ur. Then 0(U?) is a quotient ring of &(Ur). The
action of O(U;)~C®K"* on C®KP, in fact,
descends to the action of &(U?). They introduced
the algebra By(g), a kind of a g-analogue of the ring
of differential operators on UY and then V4()\), a ¢-
analogue of 0(UY). The module Vy(A) is an irredu-
cible By(g)-module generated by the highest weight
vector ¢). Then they conjectured that:

(i) V(M) has a crystal basis and an upper global
basis.
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(i) K® is isomorphic to a specialization of Vy()) at
g =1 as an 0(Ur)-module, and the irreducible
representations correspond to the upper glob-
al basis of Vp(\) at ¢ = 1.

The representations of H® such that some of X
have an eigenvalue £1 are excluded.

In this note, we treat the affine Hecke algebras
of type D. Let HE be the affine Hecke algebra of
type D of degree n (H) = C @ C, H} = C[X{], see
§3.1). Let KE be the Grothendieck group of finite-
dimensional HP-modules, and set KP = D, KP.
In D-case, we use the same algebra By(g), but,
instead of Vy(\), we use a By(g)-module Vj generated
by a pair of highest weight vectors ¢L (see §2.2).
Our conjecture (see §3.4) is then:

(i) Vp has a crystal basis and an upper global
basis.

(ii) KP is isomorphic to a specialization of Vj
at ¢ =1, and the irreducible representations
correspond to the upper global basis of Vj at
q=1.

The representations of HS such that some of X;
have an eigenvalue £1 are again excluded.

Note that the crystal basis for type D is a
double cover of the one for type B.

2. Symmetric crystals.

2.1. Quantized universal enveloping alge-
We shall recall the quantized universal
enveloping algebra U,(g). Let I be an index set
(for simple roots), and @ the free Z-module with a
basis {c;},.;. Let (o,0) : Q X Q@ — Z be a symmetric
bilinear form such that (a;,;)/2 € Zs¢ for any i
and (o, aj) € Zg for i # j where o = 20; /(o ;).
Let ¢ be an indeterminate and set K := Q(q). We
define its subrings Ag, A, and A as follows:

Ao ={f/g:f(a),9(q) € Qlql, 9(0) #0},

A ={f/gfa"),9(a") € Qla"]. g(0) #0},

A=Qlg,q "

Definition 2.1. The quantized universal
enveloping algebra U,(g) is the K-algebra generated
by the elements e;, f; and invertible elements t; (i €
1) with the following defining relations.

(1) The t;’s commute with each other.
(2) tie; t;l = q(%»a;ﬁ) e; and tjfyjtjl = qf(o‘i-ﬂﬂfi for
any i,7 € I.

bras.

=ttt .
(3) le, fil = bijj———= for i, je I, where g;:=

gevadz
(4) (Serre relation) For i # j,
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b

b
Z(_l)k:egk)ejel(bfk) _ Z(_l)kfi(k)fjfi(bfk) —0

k=0 k=0
Hereb=1— (o, o) and
e = ek /KL £ = 1t/k
K = (@ = a7/ (@ — a7 ), W0 = (1] (K.
Let us denote by U, (g) (vesp. U, (g)) the
subalgebra of U,(g) generated by the fi’s (resp.

the e;’s). Let €; and e; be the operators on U, (g)
defined by

(efa)t; —t7'ela

[ei7 a] = 1
qi — q;

(a €U, (g))-
Then these operators satisfy the following formula
similar to derivations:

¢;(ab) = €j(a)b+ (Ad(t;)a)e;b,
e;(ab) = ae;b+ (eja)(Ad(t;)b).

The algebra U, (g) has a unique symmetric bilinear
form (e, e) such that (1,1) =1 and

(¢ja,b) = (a, fib) for any a,b € U, (g).

It is non-degenerate and satisfies (efa,b) = (a,bf;).

2.2. Symmetry. Let 6 be an automorphism
of I such that 6% =id and (i), () = (i, ).
Hence it extends to an automorphism of the root
lattice @ by 6(c;) = ag(;), and induces an auto-
morphism of Uy(g).

Let By(g) be the K-algebra generated by E;, Fj,
and invertible elements K; (i € I) satisfying the
following defining relations:

(i) the K;’s commute with each other,

(ii) Ke(i) = K, for any i € I,
(i) KEK ! = qotona)
and KZF']K;1 — q(aﬁ%m’_%)}?j

(2.1) for i,j €1,
(iv) EiFj = q ) FE; + (615 + boi) 50
fori,jel,
(v) the E;’s and the F}’s satisfy the Serre
relations.

Hence By(g) ~ U, (9) @ K[K;5i e I @ Uf (g). We
set B = E/[n],! and F™ = F"/[n],\.
Proposition 2.2.
(i) There exists a By(g)-module Vy generated
by linearly independent vectors ¢, and ¢_
such that

(a) EipL =0 foranyi €I,
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(b) Ki¢ps = ¢= foranyi€ I,
(¢) {u e Vy; Biu=0 for any i € I}

=Ko¢,. @ Ko_.
Moreover such a Vy is unique up to an iso-
morphism.

(ii) There exists a unique symmetric bilinear form
(e,0) on Vi such that (¢e,¢e,) = bce for
e1,€9 € {+,—} and (Eju,v) = (u, Fjv) for any
i €1 and u,v € Vy, and it is non-degenerate.
Such a Vj is constructed as follows. Let . be

the quantum shuffle algebra (see [5]) generated by
words (i1, ...,4) for i;,...,4 € I and [ > 1 and ¢
and ¢” as two empty words. We assign to a word
(41,...,14;) the weight —(a;, + -+ ;). We define
the actions of E;, F; and K; on .¥ as follows:

F¢' = (i), Fi¢” = (0i),
Ei(j) = 0i j /fr + 6i,9j¢/i»
Kbl = ¢,
Kilin, ... i) = g~ (@tomont--tay)
iy i, 0(3)),
Ei(iy, ... i) = 614 (ia, . i),
Fyliy, ... i) = (i) % (i1, ...,4)
4 qUewt i OGN Gy 0(3)) * (6i)

*((ymail+-~+ai,/)<

q Zla"'azuazazu+17~~~azl>

Il
M\

N
(=]

—(vi, o0+ )

L)

l

§ q*(as(,,>vau+1+"‘+ai, o)
v=0

ity ey B, 0(2), Ty ey, 0(4))
fori,jel, l>1and iy,...,4, € 1.

Then the operators F;, F; and K; satisfy the
commutation relations (2.1) except the Serre rela-
tions for the E;’s.

Consider the U, (g)-module V'=U_(g)¢, &
U, (9)¢" generated by a pair of vacuum vectors
¢',. There exists a unique U, (g)-linear map 1 :
V' — % such that ¢/, — ¢/|. We define an action of
By(g) on V' by

Ki(agl) = (Ad(titgs))a)¢l,

Ei(adl) = €j(a)dly + Ad(t:)(ej,(a)) 6%,
Fi(ad,) = fiag)y

for a € U, (g). Then 1) commutes with the actions

of E;, F; and K;, and its image (V") is Vj.
Hereafter we assume further that
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(2.2)  there is no ¢ € I such that 6(i) = i.

Under this condition, we conjecture that Vj has a
crystal basis. This means the following. We define
the modified root operators:

Et(u) _ Zﬂ(n—l)un and ﬁt(u) _ ZFi(nH)un

n=1 n=0

when writing =) ., FZ.(")un with  Eu, = 0.
Let Ly be the Ay-submodule of Vj generated by
E,---F,¢: (>0 and 4y,...,ig € 1), and define
the subset By C Ly/qLy by:

Conjecture 2.3.
(i) FiLy C Ly and E;Lg C Ly,
(ii) By is a basis of Ly/qLy,
(iii) F;By C By, and E;By C By U {0}.

Moreover we conjecture that Vy has a global
crystal basis. Namely, let — be the bar-operator of
Vs, which is characterized by: § = ¢!, — commutes
with the E;’s, and (¢1+)” = ¢1 (such an operator
exists). Let us denote by By(g)’ the A-subalgebra
of By(g) generated by E™ | F; and K*' (i € I). Let
(Vg) o be the largest By(g)y -submodule of Vj such
that (Vp), N (Ko + Ké_) = Ag. + Ad_.

Conjecture 2.4. (Lgy, Ly, (Vp),) is balanced.

Namely, E:=LoNL; N(Vy)p — Lo/qLy is an
isomorphism. Let G": Ly/qLy — E be its inverse.
Then {G"(b);b € By} forms a basis of Vy. We call
this basis the upper global basis of Vj.

Remark 2.5. Assume that Conjectures 2.3
and 2.3 hold. B
(i) We have {beBy;Eb=0foranyicl}=
{4, 0-}.

(ii) There exists a unique involution o of

the By(g)-module Vp such that o(¢pr) = ¢x. It

extends to the involution o of % by

o({i1y...y41)) = (i1, ..., 0-1,0(4)). Tt induces

also involutions of Ly and By.

We have o(b) # b for any b € By.

We conjecture that Eb * ﬁjb for any b € By

and i £ j € I.

(v) In [2], a By(g)-module Vy(A) = By(g)p» and its
crystal basis By(A) are introduced. We have a
monomorphism of By(g)-modules

t:Vo(A) — Vp

with A =0, which sends ¢, to ¢+ ¢_.
Its image coincides with {v € Vp;o(v) = v}.
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Any element b € By(\) is sent to ¥ + o(¥') for
some b € By. Moreover, we have ((G" (b)) =
G" (') + o(G"(¥')). In particular, we have

Bg(/\) ~ BQ/N.

Here ~ is the equivalence relation given by
b~ ob.

3. Affine Hecke algebra of type D.

3.1. Definition. Forp e C*andn € Zs,, the
affine Hecke algebra HE of type D,, is the C-algebra
generated by T; (0 < i < n) and invertible elements
X; (1 <4 < n) satisfying the defining relations:

(i) the X;’s commute with each other,

(ii) the T;’s satisfy the braid relation: TyTy = TyTh,
ThIyTy = TyT0Ty, TTinTi =TinTiTiyn (1<
i<n—1), TTj=TT, (1<i<j—1<n-—1
ori=0<3<j<n),

(T p)(Ti+p 1) =0 (0 < i <n),
T()Xl_lT() = Xo, T; X;T; = X;11 (1 <1< TL), and
TX;=X;T, if 1<i#j,j—1 or i=0 and
i3
We define H) = C @ C and HY = C[X{].
We assume that p € C* satisfies

P# 1L
Let us denote by Pol, the Laurent polynomial ring
CIX5!, ..., X and by Pol, its quotient field
C(Xi,...,X,). Then H” is isomorphic to the tensor
product of Pol, and the subalgebra generated by

the T;’s that is isomorphic to the Hecke algebra
of type D,,. We have

(3.1)

Tia = (s;a)T; + (p —p_l)a_isiav for a € Pol,.
1— X%

Here, X = X;1X51 (i=0) and X~ = X; X}
(1 <i<n). The s;’s are the Weyl group action on
Pol,: (soa)(X1,...,Xn) = a(X; ' X7, .., X,) and
(Sﬂl)(Xh . ,Xn) = CL()(l7 . aXH-le iy - 7Xn) for
1<i<n.

3.2. Intertwiner. The algebra H,],? acts
faithfully on HP/>" HP(T; —p) ~ Pol,,. Set ¢; =

(1= XNT —(p—p DeH? and g=(pl-

pX"I ) i € Pol,, ®po, HD Then the action of ¢;
on Pol, coincides with s;. They are called inter-
twiners.

3.3. Affine Hecke algebra of type A. The
affine Hecke algebra H of type A, is isomorphic to
the subalgebra of H generated by T; (1<i<n)
and X! (1<i< n) For a finite- d1mens1onal HA-
module M, let us decompose

[Vol. 83(A),
(3.2) M= M,
ag(C)"
where
M, ={ue M;(X; —a;) u=0
for any ¢ and N > 0}

for a = (ay,...,a,) € (C*)". For a subset I C C,
we say that M is of type I if all the eigenvalues
of X; belong to I. The group Z acts on C* by
Z 5> n:a+— ap”. By well-known results in type A,
it is enough to treat the irreducible modules of type
I for an orbit I with respect to the Z-action on C*
in order to study the irreducible modules over the
affine Hecke algebras of type A.

3.4. Representations of affine Hecke lge-

bras of typeD. For n,m>0, set F,,, =
C[Xi!,..., Xt ., D] where
D= H (X; — p’X;)(X; —p X))
1<i<n<j<n+m

(X =P X (X - p X

(X = X)) (X - X,

Then we can embed Hg into HE +m OPolym Fnm DY
To = G P1Prgt - P2 T0P2 -+ Gra1 @1 -+ - P,
Ty T (1<i<m),

Xi— X (1<i<m).

Its image commutes with HD c HP Hence

P +m®Pol, nF,,, 18 a right " ® HEL modTﬂe

For a finite-dimensional Hg—module M, we
decompose M as in (3.2). The semidirect product
group Zy x Z ={1,—1} X Z acts on C* by (en):
a— a p2n

Let I and J be Zsy x Z-invariant subsets of C*
such that IN.J = (. Then for an HP-module N of
type I and Ha—module M of type J, the action of
Pol, 1, on N ® M extends to an action of F,, ,,,. We

set
NoM

= (H5+m, ®P01nr+m Fn,m) ®

N M).
(HPQHY) ) ®pol, ., Fn,m( )

Lemma 3.1.

(i) Let N be an irreducible Hg-module of type I
and M an irreducible H -module of type J.
Then N o M is an zrreduczble H5+m—module of
type T U J.

(ii) Conwversely if L is an irreducible Hg—module of
type TUJ, then there exists an integer m
(0 <m < n), an irreducible Hg—module N of
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type I and an irreducible H%
type J such that L ~ N o M.
Assume that a Zo x Zi-orbit I decomposes into
I=1,U1_ where I. are Z-orbits and
I_= (Lr)f1 Then for any irreducible HD
module L of type I, there exists an zrreduczble
HA-module M such that L ~ IndH M.
Hence in order to study HP-modules, it is
enough to study irreducible modules of type I for a
Zy x Z-orbit I in C* such that I is a Z-orbit, namely
I'==4{p"n € Zoqa} or I = £{p";n € Zeyen}-

For a Z, x Z-invariant subset I of C*, we
define K?n to be the Grothendieck group of the
abelian céutegory of finite-dimensional H,],?—modules
of type I. We set KP = D=0 K?n.

We take the case

I={p"in € Zoaa}

and assume that any of 4+1 is not contained in I.
The set I may be regarded as the set of vertices of a
Dynkin diagram. Let us define an automorphism 6
of I by a — a~!. Let g; be the associated Lie algebra
(g; is isomorphic to g[ if p has an infinite order,
and isomorphic to A if p? is a primitive ¢-th root
of unity).

For a finite-dimensional HP-module M and
a€cl, let E,M be the generalized a-eigenspace of
X, on M, regarded as gn H ;-module. Let F, M be

n-module M of

(iii)

the HY, -module IndHanC[Xi ](M®( a)) where (a)
is the 1-dimensional represéntation of C[X:!,] on

which X,.; acts as a. Then E, and F, are exact
functors and define FE, : K?n — KIDJF1 and F, :
K[ - KIn-H

For an irreducible M € KDn and a € I, define
€M € K[ .1 to be the socle of £, M. Define faM €
K1n+1 to be the cosocle of F,M. In fact, f,M is
always irreducible, and e,M is a zero module or
irreducible.

The ring HOD:C@C has two irreducible
modules ¢,. We understand

() = &((8)) = {‘f’i if a= b7,

0  otherwise,
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Fu(¢2) = fu(dz) = (a™).

Let Vj be as in Proposition 2.2.

Conjecture 3.2.
(i) KP is isomorphic to (Vp),/(q—1)(Vp)4
(ii) Vy has a crystal basis and an upper global
basis.
The elements of K? associated to irreducible
representations correspond to the upper glob-
al basis of Vy at ¢ = 1.
The operators F; and E; correspond to fZ and
€;, respectively.
Consider H = H? @ C[0]/(6> — 1) with multi-
plication 6T = Ty0, X0 = 9X1_1 and # commuting
with all other generators. Then H is isomorphic
to the specialization of the affine Hecke algebra
of type B in which the generator for the node
corresponding to the short root has eigenvalues
+1. This explains why the crystal graph in the
above case is a double covering of the crystal
graph for the same Zj X Z-orbit in type B. (See
Remark 2.5 (v).)
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