On the rank of the elliptic curves with a rational point of order 6

By Shoichi Kihara
Department of Neuropsychiatry, School of Medicine, Tokushima University
3-18-15, Kuramoto-cho, Tokushima 770-8503, Japan

(Communicated by Shigefumi Mori, m.J.A., Sept. 12, 2006)

Abstract

We construct an infinite family of elliptic curves of rank at least 4 over Q with a rational point of order 6 , which is parametrized by the rational points of an elliptic curve of rank at least 1.

Key words: Elliptic curve; rank.

Lecacheux showed an elliptic curve of rank \geq 3 with a rational point of order 6 over $Q(a)$ (see [Lecacheux]). We improve her result and show the following theorem.

Theorem 1. There are infinitely many elliptic curves of rank ≥ 4 with a rational point of order 6 over Q.

We consider the projective curve, $C:\left(x^{2}-y^{2}\right)^{2}+$ $\left(2 a x^{2}+2 b y^{2}\right) z^{2}+c z^{4}=0$. By $X=x^{2} / y^{2}$ and $Y=$ $x\left(c z^{2}+a x^{2}+b y^{2}\right) / y^{3}$, we have the elliptic curve E : $Y^{2}=X\left(\left(a^{2}-c\right) X^{2}+(2 a b+2 c) X+\left(b^{2}-c\right)\right)$. The point $P(1, a+b)$ is on E and $2 P=\left((a-b)^{2} /\left(4\left(a^{2}-\right.\right.\right.$ $\left.c)),-(a-b)\left((a+b)^{2}-4 c\right) /\left(8\left(a^{2}-c\right)\right)\right)$.

We consider the case $3 P=O$ that is $2 P=-P$. then we have $c=(3 a-b)(a+b) / 4$. In this case the point $P_{0}=P+(0,0)=((-3 a-5 b) /(a-b),(a+$ $b)(3 a+5 b) /(a-b))$ is a point of order 6 . We set $a=(u+w) / 2$ and $b=(-u+3 w) / 2$ then we have $c=u w$. Now we consider the affine curve

$$
H:\left(x^{2}-y^{2}\right)^{2}+\left(2 a x^{2}+2 b y^{2}\right)+c=0
$$

We assume that the point $P_{1}(e, f)$ is on H, then we have

$$
w=\left(-\left(e^{2}-f^{2}\right)^{2}-\left(e^{2}-f^{2}\right) u\right) /\left(e^{2}+3 f^{2}+u\right)
$$

We further assume that the points $P_{2}(g, f)$ and $P_{3}(e, h)$ are on H, then we have

$$
\begin{aligned}
g^{2}= & -\left(3 e^{2} f^{2}-7 f^{4}+e^{2} u+2 f^{2} u\right. \\
& \left.+u^{2}\right) /\left(e^{2}+3 f^{2}+u\right) \\
h^{2}= & \left(e^{2}+u\right)\left(5 e^{2}-f^{2}+u\right) /\left(e^{2}+3 f^{2}+u\right)
\end{aligned}
$$

we have $h^{2}-9 g^{2}=\left(e^{2}+7 f^{2}+2 u\right)\left(5 e^{2}-9 f^{2}+\right.$ $5 u) /\left(e^{2}+3 f^{2}+u\right)$. So we set $u=-\left(e^{2}+7 f^{2}\right) / 2$, then we have $g^{2}=\left(e^{2}-7 f^{2}\right) / 2$ and $h^{2}=9\left(e^{2}-7 f^{2}\right) / 2$.

We have the following solution;

$$
\begin{aligned}
& e=3\left(2 t^{2}+7\right) \\
& f=2 t^{2}-4 t-7 \\
& g=2 t^{2}+14 t-7 \\
& h=3\left(2 t^{2}+14 t-7\right)
\end{aligned}
$$

Now we have $3 Q(t)$-rational points on the affine curve H, and $3 Q(t)$-rational points on the corresponding elliptic curve E. Let $E(Q(t))$ be the Mordell-Weil group of $E . T$ be the torsion subgroup of $E(Q(t))$, then it is easy to see that $T \simeq Z / 6 Z$. Now we further assume that the point $P_{4}(m, h)$ is on H. Then we have
(1) $m^{2}=68 t^{4}+1096 t^{3}+3216 t^{2}-3836 t+833$.

We consider the birational transformation σ,

$$
\begin{aligned}
t= & -(1096+13 r-391 s) /(2(274+13 r \\
& +116 s)) \\
m= & 9\left(1951976+156180 r+2197 r^{2}\right. \\
& \left.+1004484 s-299091 s^{2}-4394 s^{3}\right) /(2(274 \\
& \left.+13 r+116 s)^{2}\right)
\end{aligned}
$$

The inverse is

$$
\begin{aligned}
s= & \left(381-822 t-126 t^{2}-13 m\right) /(1+2 t)^{2} \\
r= & \left(11375-31902 t+10374 t^{2}+2080 t^{3}\right. \\
& -391 m+232 m t) /(1+2 t)^{3}
\end{aligned}
$$

Then (1) becomes

$$
\begin{equation*}
r^{2}=s(s+4)(s+137) \tag{2}
\end{equation*}
$$

The point $(s, r)=(338,7410)$ is on (2), and it is easy to see that this point has non-zero canonical
height. Hence it is not a torsion point by [Silverman, p.229, Theorem 9.3 (d)], so the elliptic curve (2) has positive rank. Now we parametrize (t, m) on (1) and other 4 points on H by the rational points on (2) via the birational transformation σ.

Then we have 4 rational points on H and 4 rational points on the corresponding elliptic curve E. These 4 points are independent. For let $(s, r)=(338,7410)$ then we have $(t, m)=$ (457/3574, - 127317411/6386738). The determinant of the Grammian height-pairing matrix of these 4 points is 2269752.0316903 , since this is not 0 these points are independent, which can be directly shown from [Silverman, p.229, Theorem 9.3(c),(d)]. So we have Theorem 1.

In order to check

1) The j-invariant of $E / Q(t)$ is not constant,
2) The canonical height of $(338,7410)$ of $r^{2}=s(s+$ $4)(s+137)$ is about 1.8013214818 ,
3) The determinant of Grammian height-pairing matrix is 2269752.0316903 ,
we use the computer algebra system PARI/GP [Cohen], which has many useful functions of elliptic
curve.
In the checks of 2) and 3), we compute these values with 28 digits-precision and 100 degits-precision, and obtains the same values up to the error terms. So, it is confirmed that these values are non-zero. Similarly we can compute that the j-invariant of this curve is written in the form $j(t)=f(t) / g(t)$, where $f(t)$ and $g(t)$ are co-prime polynomials with $\operatorname{deg} f(t)=48, \operatorname{deg} g(t)=45$. This settles 1$)$.

References

[Cohen] H. Cohen, PARI/GP. http://pari.math.u-bordeaux.fr/.
[Cremona] J. E. Cremona, mwrank and related programs for elliptic curves over Q.
http://www.maths.nottingham.ac.uk/personal/ jec/mwrank/.
[Lecacheux] O. Lecacheux: Rang de courbes elliptiques avec groupe de torsion non trivial, J. Théor. Nombers Bordeaux 15 (2003), 231-247.
[Mazur] B. Mazur, Rational isogenies of prime degree, Invent. Math. 44 (1978), 129-162.
[Silverman] J. H. Silverman, The Arithmetic of Elliptic Curves, GTM 106, Springer-Verlag, New York, 1986.

