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A discrete criterion in PU (2, 1) by use of elliptic elements
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Abstract: In this paper we show a 2-dimensional subgroup in PU (2, 1) which contains
elliptics is discrete if and only if all its subgroups generated by two elliptics are discrete. This
generalize the well-known discreteness criterion first established by T. Jørgensen.
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1. Introduction. The discreteness of
Möbius groups is a fundamental problem, which
have been discussed by many authors. In 1976,
Jørgensen established his well-known result [12]:

Theorem A. A non-elementary subgroup G

of Möbius transformations acting on R
2

is discrete
if and only if for each f and g in G the group 〈f, g〉
is discrete.

This important result shows that the discrete-
ness of a non-elementary Möbius group depends
on the information of all its rank two subgroups.
Furthermore, J. Gilman [7] and N. A. Isochenko
[9] showed that the discreteness of all two-genrator
subgroups, where each generator is loxodromic, is
enough to secure the discreteness of the group.

For a space version of Theorem A, G. J. Martin
[13] showed additional condition must be added, for
example, the uniformly bounded torsion condition.
In [6], Fang and Nai weakened it to Condition A,
that is, there is no sequence {gn} of the involved
group converging to the identity such that each gn

has more than two fixed points.
W. Abikoff and A. Hass in [1] constructed an

example to show that for n ≥ 4, there exist non-
elementary subgroups of Isom(Hn) which are not dis-
crete but their subgroups generated by finitely many
elements are discrete. This means that in general
Theorem A does not apply to space. They proved
the following

Theorem B. An n-dimensional subgroup Γ
of Isom(Hn) is discrete if and only if every two-
generator subgroup of Γ is discrete.

Here by definition in [1] the n-dimensional con-
ditional condition means that Γ does not have any
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Γ-invariant proper hyperbolic subspace. In addition,
if n is even, they showed that Γ is discrete if and only
if every two-generator subgroup of Γ is discrete.

In [5], Chen Min showed that for an n-
dimensional subgroup G of Isom(Hn) and some fixed
non-trivial Möbius transformation h, if for each g ∈
G the group 〈h, g〉 is discrete, then G is discrete. The
interesting thing is the test map h may be not in G.

In this paper, we discuss the generalization of
Theorem A to the complex hyperbolic space. De-
note by H2

C the two dimensional complex hyperbolic
space, and PU (2, 1) its holomorphic isometry group.
Let G be a subgroup of PU (2, 1). Similar to [1] we
give the following definition:

Definition 1. G is 2-dimensional if G doesn’t
leave invariant a point in H2

C or a proper totally
geodesic submanifold of H2

C .
According to [4, Corollary 4.5.2], if G is a 2-

dimensional subgroup of PU (2, 1) such that the iden-
tity is not an accumulation point of the elliptic ele-
ments in G, then G is discrete. A direct consequence
is that a 2-dimensional subgroup containing no el-
liptics is discrete. So we are only interested in the
case when the involved 2-dimensional group contains
elliptic elements. The main purpose of this paper is
to show the following result:

Theorem 1. Let G be a 2-dimensional sub-
group in PU (2, 1) and contains elliptic elements.
Then G is discrete if and only if for each pair of
elliptic elements f and g in G, the subgroup 〈f, g〉 is
discrete.

Jørgensen proved Theorem A by using the fa-
mous Jørgensen’s inequality, which is a necessary
condition for discreteness of two-generator groups.
Recall that PSL(2,R) can be identified with one di-
mensional complex hyperbolic group PU (1, 1). The
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generalization of Jørgensen’s inequality to PU (2, 1)
have been studied by A. Basmajian and R. Miner,
Y. Jiang, J. Parker and S. Kamiya (See [2, 10, 11, 15,
16]). In this paper we use one of those generalization
(cf. Coro. 11.1 in [2]) considering groups generated
by two boundary elliptics, to prove our Theorem 1.
The readers can refer to [8] for more about complex
hyperbolic geometry.

2. Proof of the theorem. According to
[14], a discrete subgroup G of PU (2, 1) is elemen-
tary if its limit set L(G) contains at most two points
and can be divided into the following three cases:
(a) elliptic type, i.e., L(G) = ∅. Then G is a finite

group consisting of elliptics and all its elements
share a common fixed point in H2

C ;
(b) parabolic type, i.e., L(G) = {a}. Then G con-

sists of parabolic elements and probably elliptics
with the fixed point a;

(c) loxodromic type, i.e., L(G) = {a, b}. Then G

has a cyclic subgroup of finite index generated
by a loxodromic element with fixed points a and
b. If G contains an elliptic element, then it
either fixes or exchanges a and b.
Lemma 1 ([2]). Let f and g be boundary ellp-

tic elements with fixed point chains C1 and C2 which
are either linked or intersect at one point. Then there
exists a positive real number ε so that if the group
〈f, g〉 is discrete, and f and g do not commute, then

max{|λ(f)− 1|, |λ(g)− 1|} > ε.

Lemma 2. If the two complex geodesics
bounded by chains C1 and C2 intersect , then C1 and
C2 are linked .

Proof . ConsiderH2
C as the ball model {(z1, z2) :

|z1|2 + |z2|2 < 1} with S3 as its ideal boundary. Nor-
malize so that the two complex geodesics intersect
at the origin and C1 consists of the points {(z1, 0) :
|z1| = 1}. we may assume C2 = {(z, az) ∈ S3},
where a is a fixed complex number. Choose q =
(1, 0) as the pole. Then the ball model is mapped
to the Siegal domain {(ω1, ω2) : 2Re(ω1) + |ω2|2 <
0} by Cayley transformation (z1, z2) 7→ (z1/(1 +
z2), (1 − z2)/(2(1 + z2))). Denote by H = C × R
the Heisenberg space, whose one point compactifi-
cation is the ideal boundary of the Siegal domain.
We have the natural map from the ideal bound-
ary of the Siegal domain to H which maps (z1, z2)
to (z2/

√
2, Im(z1)). Then the Heisenberg stereo-

graphic projection P : S3 − {q} 7→ H maps (z1, z2)
to (z2/(

√
2(z1 − 1)), Im(z1 + 1)/2(z1 − 1)). Obvi-

ously, C1 and C2 correspond to the vertical axis and
(az/(

√
2(z − 1)), Im(z + 1)/(2(z − 1))) in H, respec-

tively. Recall that the image of a finite chain under
the vertical projection π to {(z, 0)} is an Euclidean
circle. Denote by x and r the center and radius of
π(C2), respectively. Then we get the equality

|az −
√

2x(z − 1)|2 = 2r2 |z − 1|2 .

Note that |z|2(|a|2 + 1) = 1, since (z, az) ∈
S3. We can deduce that 2(|x|2 − r2) =

√
2ax. By

combining the above equalities we obtain that x =
−
√

2/(2a) and r2 = 1 + 1/|a|2. Now it is easy to see
that C1 and C2 are linked.

Proof of Theorem 1. We only need to show
the “if” part. Suppose that G is not discrete. Then
there exists a sequence {gn}∞n=1 of distinct elliptic
elements such that gn → I by [4, Corollary 4.5.2].
The proof can be divided into two cases.

Case 1. Each gn is regular elliptic. Since
〈gm, gk〉 is discrete from the assumption, it is nilpo-
tent for sufficently largem and k by Margulis Lemma
and then elementary accoording to [3, Proposi-
tion 3.1.1]. Because regular elliptic elements have
unique fixed point in H2

C , 〈gm, gk〉 can not be a
parabolic group. If 〈gm, gk〉 is of loxodromic type,
gm must swap two fixed points of some loxodrmic
element in this group. Since gn → I, this is impossi-
ble if m and k are large enough. So we may assume
all 〈gm, gk〉 is of elliptic type. Let Fix(α) denote the
set of points in H2

C that are fixed by α ∈ PU (2, 1).
If α and β commute and x ∈ Fix(β), then α(x) =
αβ(x) = βα(x). It follows that α(Fix(β)) = Fix(β)
and similarly β(Fix(α)) = Fix(α). Hence gm and gk

share the same fixed point if and only if they com-
mute because each gn is regular elliptic. Find an
element γ of the 2-dimensional group G such that γ
does not fix the common fixed point of gn. Then both
γgnγ

−1 and gn are regular elliptic which converge to
the identity as n→∞ but have different fixed point.
By the same reason as above, 〈γgnγ

−1, gn〉 is of el-
liptic type. This is a contradictition.

Case 2. Each gn is boundary elliptic. Similarly,
〈gm, gk〉 is discrete and elementary for large m and
k. If 〈gm, gk〉 is of elliptic type, gm and gk have a
common fixed point in H2

C . Then they commute by
Lemma 1 and Lemma 2. If 〈gm, gk〉 is of parabolic or
loxodromic type, we easily get gm and gk have a com-
mon fixed point in ∂H2

C . Since the complex dilation
factors λ(gn) → 1 as n→∞, gm and gk commute for
sufficently large m and k by Lemma 1. So we may
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assume any two elements of {gn} commute. Note
that two boundary elliptic elements commute if and
only if they have either the same fixed point chains or
the totally geodesic planes in H2

C bounded by these
fixed point chains are orthogonal (See [2, p. 122]).
Let Fix0(α) denote the set of points in H2

C that are
fixed by α ∈ PU (2, 1). Then each Fix0(gn) is ei-
ther the same as or orthogonal to Fix0(g1). Since
each Fix0(gn) is a complex geodesic, the two com-
plex geodesics, say Fix0(gni

) (i = 1, 2), orthogonal
to Fix0(g1) in H2

C are either the same or parallel.
Note that {gni

} also commute. Then Fix0(gni
) (i =

1, 2) must coincide. Thus we may pick out a sub-
sequence of gn, which is still denoted by {gn}, such
that each element shares the same fixed point set,
which we denoted by π. Claim that there exist two
points x, y ∈ L(G) which are not contained in π.
First, There must be such a point, say x. Otherwise,
L(G) ⊂ π. Since G keeps L(G) invariant and each
element in PU (2, 1) preserves complex geodesics, it
follows that π is invariant under G. This is a contra-
diction to the 2-dimensional condition. Next, assume
that there is only one such a point, that is, L(G) =
{x} ∪ S, where S ⊂ π. Since g(L(G)) = L(G) and g
preserves complex geodesics for each g ∈ G, we must
have g(S) = (S) and then g(x) = x. This is also con-
tradict to the 2-dimensional condition. Let U and V
be neighbourhoods of x and y which do not intersect
with π, respectively. Thus there is a loxodromic γ ∈
G with one fixed point in U and the other in V by
[17, Theorem 2R]. For p sufficiently large, γp(π) ⊂
U and then γp(π) ∩ π = ∅. Hence γpgnγ

−p and gn

do not commute. By the same procedure, it follows
that 〈γpgnγ

−p, gn〉 is discrete and elementary for all
large n and then γpgnγ

−p and gn commute. This is
a contradiction.
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