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Abstract: The freeness of hyperplane arrangements in a three dimensional vector space over
finite field is discussed. We prove that if the number of hyperplanes is greater than some bound,
then the freeness is determined by the characteristic polynomial.
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1. Introduction. A hyperplane arrange-
ment A in an �-dimensional vector space V is a finite
set of linear subspaces of codimension one. An ar-
rangement A is said to be free when the associated
module of logarithmic vector fields is a free module.
Study of arrangements of this class was started by
K. Saito [Sa] and a remarkable factorization theo-
rem was proved by H. Terao [Te2]. This theorem as-
serts that the characteristic polynomial χ(A, t) of a
free arrangement completely factors into linear poly-
nomials over Z. It imposes a necessary condition
on the structure of the intersection lattice L(A) for
an arrangement A to be free. The Terao conjec-
ture is the problem to ask the converse: does the
structure of L(A) characterize freeness of A? This
question is still open even in the case � = 3. The
purpose of this paper is to propose an affirmative
result over a finite field Fq in the case � = 3. Our
main result asserts that if the number of hyperplanes
satisfies |A| ≥ 2q − 2, then A is free exactly when
χ(A, q)χ(A, q − 1) = 0. Proofs are based on Terao’s
addition-deletion theorem (Theorem 1) and Crapo-
Rota’s method of counting points by using charac-
teristic polynomials (Theorem 4, Theorem 6).

2. Freeness and characteristic polynomi-
als. Let V be an �-dimensional linear space over
a field K and S := K[V ] be the algebra of polyno-
mial functions on V that is naturally isomorphic to
K[z1, z2, · · · , z�] for any choice of basis (z1, · · · , z�)
of V ∗. A (central) hyperplane arrangement A is a fi-
nite collection of one-codimensional linear subspaces
(=hyperplanes) in V . For each hyperplane H of A,
fix a nonzero linear form αH ∈ V ∗ vanishing on H

and put Q :=
∏

H∈A αH .
The characteristic polynomial of A is defined as
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χ(A, t) =
∑

X∈L(A)

µ(X)tdim X ,

where L(A) is the lattice consisting of intersec-
tions of elements of A, ordered by reverse inclusion,
0̂ := V is the unique minimal element of L(A) and
µ : L(A) −→ Z is the Möbius function defined as
follows:

µ(0̂) = 1,

µ(X) = −
∑

Y <X

µ(Y ), if 0̂ < X.

Fix a hyperplane H ∈ A, we obtain two associated
arrangements: deletion A′ = A\{H} and restriction
A′′ = H ∩ A′. The characteristic polynomials for
these arrangements satisfy the following inductive
formula

χ(A, t) = χ(A′, t) − χ(A′′, t).

Denote by DerV the S-module of all polynomial
vector fields over V . For a given arrangement A, we
define the module of logarithmic vector fields as

D(A) = {δ ∈ DerV | δ(αH) ∈ αHS, ∀H ∈ A}.
An arrangement A is said to be free, if D(A) is
a free S-module, and then the multiset of degrees
exp(A) := (d1, d2, · · · , d�) of homogeneous basis of
D(A) is called the exponents. The following theo-
rems are due to H. Terao.

Theorem 1 ([Te1], [OT, Thm 4.52]). Let A
be a non-empty arrangement in K3. Let (A,A′,A′′)
be a triple as above. Then, any two of the following
imply the third:

• A is free with exponents (d1, d2, d3).

• A′ is free with exponents (d1, d2, d3 − 1).

• |A′′| = d1 + d2.
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Theorem 2 ([Te2]). If A is a free arrangement
with exponents (d1, d2, · · · , d�) then the characteris-
tic polynomial is

χ(A, t) = (t − d1) · · · (t − d�).

Example 3 ([Te3]). Let V be an �-dimensional
vector space over a finite field Fq of q elements and
Aall(V ) be the collection of all hyperplanes in V . Put

δk =
�∑

i=1

xqk

i

∂

∂xi
.

Then for any linear form α, δkα = αqk

. Hence
δk ∈ D(Aall). From Saito’s criterion [Sa],
δ0, δ1, · · · , δ�−1 form a basis of D(Aall) and expo-
nents are (1, q, · · · , q�−1).

3. Arrangements over finite fields. If K
is a finite field, the characteristic polynomial χ(A, t)
has a special meaning. The following theorem and
its proof is found in [OT, 2.69], and it is a special
version of more general result obtained in [CR] (see
also Theorem 6 below).

Theorem 4. Let A be a hyperplane arrange-
ment in V ∼= F�

q. Let |M(A)| denote the cardinality
of the complement. Then

|M(A)| = χ(A, q).

This theorem has been successfully applied by
Athanasiadis [Ath] to compute characteristic poly-
nomials for arrangements defined over Q.

An arrangement A over a field Fq can be natu-
rally considered as an arrangement over an extended
field Fqk . Since field extensions do not change the
intersection lattice, the characteristic polynomial is
also unchanged. Hence from Theorem 4, we have

∣∣∣∣∣V ⊗Fq Fqk −
⋃

H∈A
(H ⊗ Fqk)

∣∣∣∣∣ = χ(A, qk).

Not only χ(A, q), but also χ(A, qk) expresses the car-
dinality of points of the complement of arrangement
A⊗ Fqk . We have the following lemma.

Lemma 5. Let A, A1 and A2 be arrangements
in F�

q, then
(i) χ(A, qk) ≥ 0 for all k ∈ Z>0.

(ii) If A1 ⊂ A2, then χ(A1, q
k) ≥ χ(A2, q

k) for all
k ∈ Z>0.
The following Theorem is due to H. Crapo and

G. -C. Rota. It contains Theorem 4 as a special case
(k = 1). Here we deduce from Theorem 4.

Theorem 6 ([CR, §16, Theorem 1]). Let A
be an arrangement in F�

q. The number of ordered
points (p1, · · · , pk) ∈ (F�

q)k satisfying the following
condition (∗) is χ(A, qk) :
(∗) For each hyperplane H ∈ A, there exists at least

one point pi such that pi /∈ H.
Proof. Recall that Fqk is an k-dimensional vec-

tor space over Fq. Let x1, · · · , xk be a Fq-basis of
Fqk . Then the point P in F�

qk is expressed as

P =




k∑
j=1

a1jxj ,
k∑

j=1

a2jxj , · · · ,
k∑

j=1

a�jxj


 ,

where aij ∈ Fq. Since the defining equation of H ⊗
Fqk is a linear form with coefficients in Fq, the point
P is contained in H ⊗ Fqk if and only if

(a1j , a2j , · · · , a�j) ∈ H, ∀j = 1, · · · , k.

Hence P is in the complement of arrangement A ⊗
Fqk if and only if for each H ∈ A, there exists at least
one j ∈ {1, · · · , k} such that (a1j , a2j , · · · , a�j) /∈
H . So this gives a bijection between complement of
A⊗Fqk and ordered k points in F�

q satisfying (∗). �
The next result is shown immediately from The-

orem 6, but we give an alternative proof, since the
arguments in the proof are prototypical and will be
used later.

Lemma 7. Let A be an arrangement in F�
q. If

the characteristic polynomial satisfies χ(A, qk) = 0
for some k, then χ(A, qj) = 0 for 0 ≤ j ≤ k.

Proof. The proof is done by induction on the
dimension � and “descending” induction on the num-
ber |A| of hyperplanes. If |A| is maximal, in other
words, A = Aall(F�

q), then the characteristic poly-
nomial is

χ(Aall(F�
q), t) = (t − 1)(t − q) · · · (t − q�−1),

so the lemma is trivial. In the case � = 2 is also
trivial. In general, let A′ be an arrangement such
that A′ � Aall(F�

q) and assume χ(A′, qk) = 0. We
can find a hyperplane H which is not contained in
A′ and define A = A′ ∪ {H}. From Lemma 5, we
have χ(A′, qk) ≥ χ(A, qk) = 0. From the inductive
hypothesis on the number of hyperplanes, we have

χ(A, qj) = 0, for 0 ≤ j ≤ k.

Denote A′′ the restriction H ∩ A′, we have
χ(A′′, qk) = χ(A′, qk)−χ(A, qk) = 0. Since dim H <

�, we have
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χ(A′′, qj) = 0, for 0 ≤ j ≤ k.

Again from inductive formula, we have χ(A′, qj) =
0, for 0 ≤ j ≤ k. �

Using the above lemma, we can characterize
Aall(F�

q).
Corollary 8. Let A be an arrangement in F�

q.
The following conditions are equivalent.
(a) A = Aall(F�

q).

(b) |A| = q�−1
q−1 .

(c) χ(A, t) = (t − 1)(t − q) · · · (t − q�−1).

(d) χ(A, q�−1) = 0.
Proof. (a)⇔(b)⇔(c)⇒(d) is trivial. (d)⇒(c) is

from the above lemma. �
Here we assume � = 3, and give some combina-

torial characterization for freeness.
Lemma 9. Let A be an free arrangement in F3

q

with exponents (1, d2, d3). If d2 ≤ d3, then d2 ≤ q.
Proof. Note that d2 is the minimal degree of

the logarithmic vector field δ ∈ D(A) which is not a
polynomial multiple of the Euler vector field δ0 (see
Example 3 for the notation). Since δ1 is contained
in D(A), such a minimal degree can not be greater
than q = deg δ1. �

Theorem 10. Let A be an arrangement in F3
q.

(1) If χ(A, q) = 0, then A is free with exponents
(1, q, |A| − q − 1).
(2) If |A| ≥ 2q and A is free then χ(A, q) = 0.

Proof. (1) Suppose that χ(A, q) = 0. We prove
the freeness by descending induction on |A|. Re-
call that A = Aall is free with exponents (1, q, q2)
(see Example 3). In general, choose a hyperplane H

which is not a member of A. Then by Lemma 5, we
have

0 = χ(A, q) ≥ χ(A ∪ {H}, q) ≥ 0,

hence χ(A∪{H}, q) = 0. From the inductive hypoth-
esis, A ∪ {H} is free with exponents (1, q, |A| − q).
Then Theorem 1 enables us to conclude that A is
free.

(2) Suppose A is free. Note that from the as-
sumption on |A|, A is an essential arrangement.
Hence the characteristic polynomial is of the form
χ(A, t) = (t−1)(t−d2)(t−d3) with integers d2 ≤ d3

which satisfy d2 + d3 = |A| − 1 ≥ 2q − 1. From
the Lemma 9, we have d2 ≤ q ≤ d3. However
d2 < q < d3 contradicts the Lemma 5 (i) χ(A, q) ≥ 0,
we have either

(d2, d3) = (q, |A| − q − 1) if |A| > 2q, or

(d2, d3) = (q − 1, q) if |A| = 2q.

�
By a similar argument to (1), we have the fol-

lowing theorem for higher dimensional cases.
Theorem 11. Let A be an arrangement in F�

q.
If A satisfies

χ(A, q�−2) = 0,

then A is free with exponents (1, q, · · · , q�−2, |A| −
1 − q − · · · − q�−2).

Remark 12. The argument used in the proof
of Theorem 10 (1) can be considered as an example
of “supersolvable resolution” in [Zi].

In the next result we will treat the cases |A| =
2q − 1 and 2q − 2.

Theorem 13. Suppose that χ(A, q) �= 0.
(1) When |A| = 2q − 1, A is free if and only if
χ(A, t) = (t − 1)(t − q + 1)2.
(2) When |A| = 2q − 2, A is free if and only if
χ(A, t) = (t − 1)(t − q + 1)(t − q + 2).

Proof. (1) The similar arguments above from
the fact χ(A, q) ≥ 0 shows that the freeness of A
implies χ(A, t) = (t − 1)(t − q + 1)2. Conversely,
suppose χ(A, t) = (t − 1)(t − q + 1)2, then

|M(A)| = χ(A, q) = q − 1.

This means that there exists a line L ⊂ F3
q such that

M(A) = L \ {0}.
Choose a hyperplane H containing L, then A∪ {H}
is free with exponents (1, q − 1, q). Again by using
Theorem 1, we conclude that A is free with expo-
nents (1, q − 1, q − 1). (2) can be proved similarly.

�
We can summarize the results as follows:
Corollary 14. (1) When |A| ≥ 2q, A is free if

and only if χ(A, q) = 0, or equivalently, M(A) = ∅.
(2) When |A| = 2q−1, A is free if and only if either
χ(A, q) = 0 or χ(A, t) = (t − 1)(t − q + 1)2.
(3) When |A| = 2q−2, A is free if and only if either
χ(A, q) = 0 or χ(A, q) = (t− 1)(t− q + 1)(t− q + 2).

Example 15 ([Zi]). Let us fix a line L ⊂ F3
3,

and define an arrangement A1 by

A1 = {H ∈ Aall(F3
3) | H � L}.

We can easily seen that |A1| = 9 > 2 × 3. Since
M(A1) �= ∅, A1 is not free. However, in [Zi], Ziegler
proved the following. Let A2 be an arrangement in
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K3 satisfying L(A1) ∼= L(A2). If the characteristic
of the field K is not 3, then A2 is free with exponents
(1, 4, 4).
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