Cofree embeddings of algebraic tori preserving canonical sheaves

By Haruhisa Nakajima
Department of Mathematics, Faculty of Science, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan

(Communicated by Shigefumi Mori, M.J.A., Nov. 13, 2006)

Abstract

Let $\varrho: G \rightarrow G L(V)$ be a finite dimensional rational representation of a diagonalizable algebraic group G over an algebraically closed field K of characteristic zero. Using a minimal paralleled linear hull (W, w) of ϱ defined in [N4], we show the existence of a cofree representation $\widetilde{G_{w}} \hookrightarrow G L(W)$ such that $\varrho\left(G_{w}\right) \subseteq \widetilde{G_{w}}$ and $W / / G_{w} \rightarrow W / / \widetilde{G_{w}}$ is divisorially unramified is equivalent to the Gorensteinness of $V / / G$.

Key words: Cofree representations; algebraic tori; character groups; canonical modules; Gorenstein rings.

1. Introduction. Without specifying, G will always stand for a reductive affine algebraic group whose identity component is an algebraic torus over an algebraically closed field K of characteristic zero. Let $\mathfrak{X}(G)$ stand for the rational character group of G over K which is regarded as an additive group. For an affine variety X over $K, \mathcal{O}(X)$ denotes the K algebra of all regular functions on X. When a regular action of G on an affine variety X (abbr. (X, G)) is given, we denote by $X / / G$ the algebraic quotient of X under the action of G and by $\pi_{X, G}$ the quotient map $X \rightarrow X / / G$. For $\psi \in \mathfrak{X}(G)$, let $\mathcal{O}(X)_{\psi}$ be the set $\{f \in \mathcal{O}(X) \mid \sigma(f)=\psi(\sigma) \cdot f(\forall \sigma \in G)\}$, which is regarded as an $\mathcal{O}(X)^{G}$-module. A regular action (X, G) is said to be stable, if X contains a nonempty open subset consisting of closed G-orbits. Let $X_{\text {st }}$ denote the affine variety defined by $\mathcal{O}\left(X_{\mathrm{st}}\right)=\mathcal{O}(X)_{\mathrm{st}}$, where $\mathcal{O}(X)_{\text {st }}$ is the K-subalgebra of $\mathcal{O}(X)$ generated by $\mathcal{O}(X)_{\chi}$'s such that $\mathcal{O}(X)_{\chi} \cdot \mathcal{O}(X)_{-\chi} \neq\{0\}$, $\chi \in \mathfrak{X}\left(G^{0}\right)$ (cf. [N1]). Then the induced action $\left(X_{\text {st }}, G\right)$ is stable, for any (X, G). Consider a finite dimensional rational G-module V. A pair (W, w) is defined to be a paralleled linear hull of (V, G), if W is a G-submodule of $V_{\text {st }}$ such that G is diagonalizable on the quotient module $V_{\text {st }} / W, w$ is a nonzero vector of V_{st} satisfying the condition $W \cap\langle G \cdot w\rangle_{K}=\{0\}$ and the G_{w}-equivariant morphism

$$
(\bullet+w): W \ni x \mapsto x+w \in V_{\mathrm{st}}
$$

induces the isomorphism
$\pi_{V_{\mathrm{st}} / / G_{w}, V / / G} \circ(\bullet+w) / / G_{w}: W / / G_{w} \xrightarrow{\sim} V_{\mathrm{st}} / / G$.
2000 Mathematics Subject Classiffcation. 20G05, 13A50, 14 L 30 .

Here $(\bullet+w) / / G_{w}: W / / G_{w} \longrightarrow V_{\mathrm{st}} / / G_{w}$ is the quotient of $(\bullet+w)$ modulo G_{w} and $\pi_{V_{\mathrm{st}} / / G_{w}, V / / G}$: $V_{\text {st }} / / G_{w} \longrightarrow V_{\text {st }} / / G$ is associated with the inclusion $\mathcal{O}\left(V_{\text {st }}\right)^{G} \hookrightarrow \mathcal{O}\left(V_{\text {st }}\right)^{G_{w}}$. A paralleled linear hull (W_{0}, w_{o}) of (V, G) is said to be minimal, if W_{0} is minimal with respect to inclusions in the set consisting of all subspaces W 's of $V_{\text {st }}$ such that (W, w) 's are paralleled linear hulls of (V, G) for some w 's. An element $\sigma \in G$ is said to be a pseudo-reflection on V, if $\operatorname{dim}(\sigma-1)\left(V^{\vee}\right)=\operatorname{ht}\left((\sigma-1)\left(V^{\vee}\right) \cdot \mathcal{O}(V) \cap \mathcal{O}(V)^{G}\right) \leq$ 1 , where V^{\vee} is the dual space of V over K. We have the following fundamental result for minimal paralleled hulls:

Theorem 1.1 (cf. [N4]). Suppose that G equals to the centralizer $Z_{G}\left(G^{0}\right)$ of G^{0} in G. Let (W, w) be a minimal paralleled linear hull of (V, G). Then
(1) $\pi_{W, G_{w}}$ is no-blowing-up of codimension one (for definition, cf. $[\mathrm{F}])$ and G_{w} acts transitively on the set of irreducible components of codimension one in W of the fibre of each irreducible closed subvariety of $W / / G_{w}$ of codimension one under the morphism $\pi_{W, G_{w}}$.
(2) $\mathfrak{X}\left(G_{w} / \mathcal{R}_{W}\left(G_{w}\right)\right) \cong \mathrm{Cl}\left(\mathcal{O}(V)^{G}\right)$, where \mathcal{R}_{W} $\left(G_{w}\right)$ denotes the subgroup of G_{w} generated by all pseudo-reflections of G_{w} on W.
Conversely, the conclusion (1) of (1.1) characterizes minimality of the paralleled linear full $\left(W, G_{w}\right)$ of (V, G) under the condition $Z_{G}\left(G^{0}\right)=G$. For a diagonalizable G, the following results are obtained. In Sect. 3, we will show the existence of a cofree representation $\widetilde{G_{w}} \hookrightarrow G L(W)$ such that $\left.G_{w}\right|_{W} \subseteq \widetilde{G_{w}}$ and $W / / G_{w} \rightarrow W / / \widetilde{G_{w}}$ is divisorially unramified is
equivalent to the fact that $V / / G$ is Gorenstein. Some examples of the main result (2.6) can be found in Sect. 2.

The symbol $\sharp(\circ)$ stands for the cardinality of the set \circ and let \mathbf{Z}_{0} denote the additive monoid of non-negative integers. For a mapping $\varphi: A \rightarrow B$ and a subset $A^{\prime} \subseteq A$, let $\left.\varphi\right|_{A^{\prime}}$ denote the restriction of φ to A^{\prime} and, for a set Ω of mappings $\varphi: A \rightarrow B$, let $\left.\Omega\right|_{A^{\prime}}$ be the set of restrictions $\left.\varphi\right|_{A^{\prime}}$ s $(\varphi \in \Omega)$.
2. Cofree embeddings. If Λ is a subset of $\mathfrak{X}(G)$, let $\mathbf{Z}_{0} \cdot \Lambda$ (resp. $\left.\mathbf{Z}_{+} \cdot \Lambda\right)$ denote the set of all linear combinations of any finite subset of Λ with coefficients in \mathbf{Z}_{0} (resp. \mathbf{Z}_{+}) in $\mathfrak{X}(G)$, where $\mathbf{Z}_{+}=\mathbf{N}$ and $\mathbf{Z}_{0} \cdot \emptyset$ means $\{0\}$. For any $\chi \in \mathfrak{X}(G)$ and a rational G module V, let $V_{\chi}=\{x \in V \mid \sigma(x)=\chi(\sigma) \cdot x \quad(\forall \sigma \in$ $G)\}$ denote the subspace of χ-invariants or relative invariants of G with respect to χ in V. For a rational G-module V, let V^{\vee} be the dual module on which G acts naturally and $\mathcal{W}(V, G)$ denote the set of all weights of G on V (i.e., $\left.\left\{\chi \in \mathfrak{X}(G) \mid V_{\chi} \neq\{0\}\right\}\right)$.

Definition 2.1. A subset Λ of $\mathcal{W}\left(V_{\text {st }}, G\right)$ of a finite dimensional rational G-module V is said to be G-removable on V_{st}, if $\operatorname{dim}\left(V_{\mathrm{st}}\right)_{\left.\chi\right|_{G^{0}}}=1(\forall \chi \in \Lambda)$ and

$$
\left(\left.\mathbf{Z}_{+} \cdot \Lambda^{\prime}\right|_{G^{0}}\right) \bigcap\left(\mathbf{Z}_{0} \cdot\left(\left.\mathcal{W}\left(V_{\text {st }}, G^{0}\right) \backslash \Lambda^{\prime}\right|_{G^{0}}\right)\right)=\emptyset
$$

for any non-empty subset Λ^{\prime} of Λ. Clearly any G removable subset does not contains the trivial character 0 . We say Λ is a maximal G-removable subset of $\mathcal{W}\left(V_{\text {st }}, G\right)$, if it is maximal with respect to inclusions in the set of all G-removable subsets of $\mathcal{W}\left(V_{\mathrm{st}}, G\right)$.

Let Λ be a subset of $\mathcal{W}\left(V_{\text {st }}, G\right)$ and y_{χ} a nonzero element in $\left(\left(V_{\text {st }}\right)^{\vee}\right)_{-\chi}$ for each $\chi \in \Lambda$. The set $\left\{y_{\chi} \mid\right.$ $\chi \in \Lambda\}$ is said to be $\left(\mathcal{O}\left(V_{\text {st }}\right), G\right)$-free, if, for any $a_{\chi} \in$ \mathbf{Z}_{0}, there exists a rational character $\psi \in \mathfrak{X}(G)$ such that

$$
\mathcal{O}\left(V_{\mathrm{st}}\right)_{\psi}=\mathcal{O}\left(V_{\mathrm{st}}\right)^{G} \cdot \prod_{\chi \in \Lambda} y_{\chi}^{a_{\chi}}
$$

Then we have
Proposition 2.2. For any subset Λ of $\mathcal{W}\left(V_{\mathrm{st}}, G\right)$, it is G-removable on V_{st} if and only if $\left\{y_{\chi} \mid \chi \in \Lambda\right\}$ is $\left(\mathcal{O}\left(V_{\text {st }}\right), G\right)$-free.

Proof. We easily see that the set $\left\{y_{\chi} \mid \chi \in \Lambda\right\}$ is $\left(\mathcal{O}\left(V_{\mathrm{st}}\right), G\right)$-free if and only if it is $\left(\mathcal{O}\left(V_{\mathrm{st}}\right), G^{0}\right)$ free (cf. [N4]). Suppose that Λ is G-removable in $\mathcal{W}\left(V_{\mathrm{st}}, G\right)$. As

$$
\left(\left(V_{\mathrm{st}}\right)^{\vee}\right)_{-\left.\chi\right|_{G^{0}}}=K \cdot y_{\chi}=\left(\left(V_{\mathrm{st}}\right)^{\vee}\right)_{-\chi}
$$

we see that $\left.\chi\right|_{G^{\circ}}, \chi \in \Lambda$, are different each other. Let us denote by $\left\{z_{1}, \ldots, z_{l}\right\}$ a K-basis of the K-subspace $\sum_{\left.\psi \in \mathcal{W}\left(V_{\mathrm{st}}, G^{0}\right) \backslash \Lambda\right|_{G^{0}}}\left(\left(V_{\mathrm{st}}\right)^{\vee}\right)_{-\psi}$ of $\left(V_{\mathrm{st}}\right)^{\vee}$ consisting of relative invariants of G^{0}. Let $a_{\chi}, \chi \in \Lambda$, be any nonnegative integers. For $b_{\chi} \in \mathbf{Z}_{0}(\chi \in \Lambda)$ and $c_{i} \in \mathbf{Z}_{0}(1 \leq i \leq l)$, the condition that

$$
\prod_{\chi \in \Lambda} y_{\chi}^{b_{\chi}} \cdot \prod_{i=1}^{l} z_{i}^{c_{i}} \in \mathcal{O}\left(V_{\mathrm{st}}\right)_{\left.\sum_{\chi \in \Lambda} a_{\chi} \cdot \chi\right|_{G^{0}}}
$$

is equivalent to

$$
\begin{aligned}
& \left.\sum_{\chi \in \Lambda, b_{\chi} \geq a_{\chi}}\left(b_{\chi}-a_{\chi}\right) \cdot \chi\right|_{G^{0}}+\sum_{i=1}^{l} c_{i} \cdot \psi_{i} \\
& =\left.\sum_{\chi \in \Lambda, a_{\chi}>b_{\chi}}\left(a_{\chi}-b_{\chi}\right) \cdot \chi\right|_{G^{0}}
\end{aligned}
$$

where $\psi_{i} \in \mathcal{W}\left(V_{\mathrm{st}}, G^{0}\right)$ such that $z_{i} \in\left(\left(V_{\mathrm{st}}\right)^{\vee}\right)_{-\psi_{i}}$. Thus (2.1) implies that $b_{\chi} \geq a_{\chi}$ for all $\chi \in \Lambda$, which implies

$$
\prod_{\chi \in \Lambda} y_{\chi}^{b_{\chi}} \cdot \prod_{i=1}^{l} z_{i}^{c_{i}} \in \mathcal{O}\left(V_{\mathrm{st}}\right)^{G^{0}} \cdot \prod_{\chi \in \Lambda} y_{\chi}^{a_{\chi}}
$$

and the equality

$$
\mathcal{O}\left(V_{\mathrm{st}}\right)_{\left.\sum_{\chi \in \Lambda} a_{\chi} \cdot \chi\right|_{G^{0}}}=\mathcal{O}\left(V_{\mathrm{st}}\right)^{G^{0}} \cdot \prod_{\chi \in \Lambda} y_{\chi}^{a_{\chi}}
$$

The proof of "if part" of the assertion in Proposition 2.2 is left to the reader.

For a subset Ω of V_{st} or $\left(V_{\mathrm{st}}\right)^{\vee}$, let Ω^{\perp} be the set of all elements orthogonal to Ω under the canonical pairing

$$
V_{\mathrm{st}} \times\left(V_{\mathrm{st}}\right)^{\vee} \rightarrow K
$$

Combining (2.2) with [N4], we immediately have
Corollary 2.3. For a G-submodule W of $V_{\text {st }}$ such that G is diagonalizable on V / W, there exists a vector $w \in V_{\text {st }}$ satisfying that (W, w) is a paralleled linear hull if and only if

$$
W=\left(\sum_{\chi \in \Lambda}\left(\left(V_{\mathrm{st}}\right)^{\vee}\right)_{-\chi}\right)^{\perp}
$$

for a G-removable subset Λ of $\mathcal{W}\left(V_{\mathrm{st}}, G\right)$ on V_{st}. Furthermore, in this notation, (W, w) is a minimal paralleled linear hull of (V, G) if and only if Λ is a maximal G-removable subset of $\mathcal{W}\left(V_{\mathrm{st}}, G\right)$ on $V_{\text {st }}$.

For a Cohen-Macaulay \mathbf{Z}_{0}-graded domain R defined over K, the graded canonical module of R is denoted by ω_{R}.

Theorem 2.4 (G. Kempf - R. P. Stanley - V. I. Danilov (e.g., [D, S2, TE])). Let $\varrho: D \rightarrow G L(V)$ be a finite dimensional stable rational representation of a diagonalizable group D. Then the canonical module $\omega_{\mathcal{O}(V)^{D}}$ of the \mathbf{Z}_{0}-graded Cohen-Macaulay algebra $\mathcal{O}(V)^{D}$ is isomorphic to the graded module $\mathcal{O}(V)_{\left.\left(\operatorname{det}_{V}\right)\right|_{D}}(-\operatorname{dim} V)$ of invariants relative to $\left.\operatorname{det}_{V}\right|_{D}$ in $\mathcal{O}(V)$.

Definition 2.5. For a finite dimensional rational representation $\phi: H \rightarrow G L(W)$ of a diagonalizable group H, a faithful rational representation $\widetilde{\phi}: \widetilde{H} \rightarrow G L(W)$ of a diagonalizable group \widetilde{H} is defined to be a cofree embedding of $\phi: H \rightarrow G L(W)$ (or of (W, H)), if the following conditions are satisfied: (1) $\underset{\sim}{\phi}(H)\left(\left.\underset{\sim}{=} H\right|_{W}\right) \subseteq \widetilde{\phi}(\widetilde{H})$ and $\phi\left(\mathcal{R}_{W}(H)\right)=$ $\widetilde{\phi}\left(\mathcal{R}_{W}(\widetilde{H})\right)$.
(2) The representation $\widetilde{\phi}$ is stable and cofree. A cofree embedding $\widetilde{\phi}: \widetilde{H} \rightarrow G L(W)$ of $\phi: H \rightarrow$ $G L(W)$ is said to be canonical, if $\widetilde{\phi}(\widetilde{H})$ is minimal in $\psi(L)$'s for all cofree embeddings $\psi: L \rightarrow G L(W)$ of ϕ.

Theorem 2.6. Suppose that G is a diagonalizable group and (V, G) is a finite dimensional representation of G. Then the following conditions are equivalent:
(1) $V / / G$ is a Gorenstein variety.
(2) For a minimal paralleled linear hull (W, w) of (V, G), there exists a canonical cofree embedding (W, \widetilde{H}) of $\left(W, G_{w}\right)$.
If these conditions hold, then

$$
\omega_{\mathcal{O}(W)^{\widetilde{H}}} \cdot \mathcal{O}(W)^{G_{w}}=\omega_{\mathcal{O}(W)^{G_{w}}}
$$

and $\mathcal{O}(W)^{\widetilde{H}}$ is generated by a part of a minimal generating system of $\mathcal{O}(W)^{G_{w}}$ consisting of monomials of a K-basis of W^{\vee} on which \widetilde{H} is represented as a diagonal group.
2.7. Examples for (2.6). In order to explain the content of this theorem, we now give the following examples, in which $\left\{Y_{1}, \ldots, Y_{n}\right\}$ denotes a K-basis of V^{\vee} such that G is diagonal on this basis.

Example 2.7.1. For any $N=\prod Y_{i}^{c_{i}} \in \mathcal{O}(V)$, we denote $\operatorname{supp}_{\left\{Y_{i}\right\}}(N)$ by the set $\left\{Y_{i} \mid c_{i}>\right.$ $0\}$. Suppose that $\mathcal{O}(V)^{G}$ has a homogeneous system $\left\{N_{1}, \ldots, N_{d}\right\}(d \geq 1)$ of parameters consisting of monomials of that basis (if $\operatorname{dim} \mathcal{O}(V)^{G} \leq 2$, this condition always holds (e.g., [TE])). Then we must have $V_{\mathrm{st}}=\left(\sum_{Y_{k} \in \Gamma} K \cdot Y_{k}\right)^{\vee}$, where $\Gamma=$ $\cup_{j=1}^{d} \operatorname{supp}_{\left\{Y_{i}\right\}}\left(N_{j}\right)$. Put

$$
\begin{aligned}
W=\{ & x \in V_{\text {st }} \mid Y_{j}(x)=0 \\
& \left.\forall Y_{j} \in \cup_{s \neq t}\left(\operatorname{supp}_{\left\{Y_{i}\right\}}\left(N_{s}\right) \cap \operatorname{supp}_{\left\{Y_{i}\right\}}\left(N_{t}\right)\right)\right\}
\end{aligned}
$$

and $H=\operatorname{Ker}\left(G \rightarrow G L\left(V_{\mathrm{st}} / W\right)\right)$. Then (W, w) is a minimal paralleled linear full of (V, G) for some $w \in V_{\text {st }}$ and $H=G_{w}$.

Example 2.7.2. Let $\xi_{j}(1 \leq j \leq n)$ denote the character of G^{0} satisfying $\left(V^{\vee}\right)_{-\xi_{j}} \ni Y_{j}$. Suppose that $\operatorname{dim} G=3$ express $\xi_{j}=\sum_{i=1}^{3} c_{i j} \chi_{i}$ for some $c_{i j} \in \mathbf{Z}$, where $\left\{\chi_{1}, \chi_{2}, \chi_{3}\right\}$ generates the additive group $\mathfrak{X}\left(G^{0}\right)$. For some $(n>) m \in \mathbf{N}$, assume that $\left\{j \mid 1 \leq j \leq m, c_{2 j}<0\right\} \neq \emptyset$,

$$
\left\{\begin{array}{l}
c_{2 j} \leq 0, c_{3 j}=0 ; \quad 1 \leq j \leq m \\
c_{1 m+1}=c_{3 m+1}=0, c_{2 m+1}=1 \\
c_{3 j}>0 ; \quad j>m+1
\end{array}\right.
$$

and $\sharp\left(\left\{j \mid 1 \leq j \leq m, c_{1 j}<0\right\}\right) \cdot \sharp(\{j \mid 1 \leq j \leq$ $\left.\left.m, c_{1 j}>0\right\}\right) \geq 2$. Then the condition on $c_{3 j}$'s implies that

$$
\mathcal{O}(V)^{\cap_{i=1,2} \operatorname{Ker}\left(\chi_{i}\right)}=K\left[Y_{1}, \ldots, Y_{m+1}\right]^{\cap_{i=1,2} \operatorname{Ker}\left(\chi_{i}\right)}
$$

Since $\operatorname{dim}\left(\left.G^{0}\right|_{\sum_{i=1}^{m+1} K Y_{i}}\right)=2$, we easily have

$$
V_{\mathrm{st}}=\left(\sum_{j=1}^{m+1} K Y_{j}\right)^{\vee}
$$

Putting

$$
W=\left\{x \in V_{\text {st }} \mid Y_{m+1}(x)=0\right\}
$$

and $H=G_{Y_{m+1}}$, we see that (W, w) is a minimal paralleled linear full of (V, G) for some $w \in V_{\text {st }}$ and $H=G_{w}$.

Remark 2.7.3. We apply (2.6) to these examples as follows:

For the decomposition

$$
\{1, \ldots, m\}=J_{1} \sqcup \cdots \sqcup J_{l} \text { (disjoint union) }
$$

to non-empty subsets, put

$$
\begin{aligned}
H_{\left\{J_{k}\right\}}= & \left\{\operatorname{diag}\left(c_{1}, \ldots, c_{m}\right) \mid \forall c_{j} \in K\right. \\
& \text { such that } \left.\prod_{j \in J_{k}} c_{j}=1(1 \leq k \leq l)\right\}
\end{aligned}
$$

defined on the the basis of W on which H is represented as a diagonal group. For a convenience sake, suppose that $\left.\mathcal{R}_{W}(H)\right|_{W}=\{1\}$. Then $\mathcal{O}(V)^{G}$ is a Gorenstein ring if and only if $\left.H\right|_{W} \subseteq H_{\left\{J_{k}\right\}}$ for some decomposition $\{1, \ldots, m\}=J_{1} \sqcup \cdots \sqcup J_{l}$. In this case, a minimal subgroup $\widetilde{H}=H_{\left\{J_{k}\right\}}$ such that
$\left.H\right|_{W} \subseteq H_{\left\{J_{k}\right\}}$ defines a canonical cofree embedding (W, \widetilde{H}) of (W, H).
3. Existence of cofree embeddings. For a homomorphism $A \rightarrow B$ of integral domains, let $\mathrm{Ht}_{1}(B, A)$ denote the set consisting of all prime ideals of B of height one whose restrictions to A are also of height one.
3.1. Cofree representations. Let (W, w) be a minimal paralleled linear hull of a finite dimensional representation (V, G) of a diagonalizable G. Let $\left\{X_{1}, \ldots, X_{m}\right\}$ be a K-basis of the dual W^{\vee} of W on which H is represented as a diagonal group, where H denotes G_{w}.

Let $D_{\left\{X_{i}\right\}}(W)$ be the subgroup of $G L(W)$ consisting of all elements which induces diagonal matrices on the K-basis $\left\{X_{1}, \ldots, X_{m}\right\}$ of the dual module W^{\vee}. For a closed subgroup L of $G L(W)$ which is diagonal on $\left\{X_{1}, \ldots, X_{m}\right\}$ such that (W, L) is stable, we note the following two facts:

Remark 3.1.1. For a prime ideal $\mathfrak{P} \in$ $\operatorname{Ht}_{1}\left(\mathcal{O}(W), \mathcal{O}(W)^{L}\right)$, let $I_{L}(\mathfrak{P})$ denote the inertia group at \mathfrak{P} and $\mathrm{e}\left(\mathfrak{P}, \mathfrak{P} \cap \mathcal{O}(W)^{L}\right)$ the ramification index of \mathfrak{P} over $\mathfrak{P} \cap \mathcal{O}(W)^{L}$ (cf. [N2]). Then we see that $\left.I_{L}(\mathfrak{P})\right|_{W}$ is a finite group,

$$
\mathrm{e}\left(\mathfrak{P}, \mathfrak{P} \cap \mathcal{O}(W)^{L}\right)=\sharp\left(\left.I_{L}(\mathfrak{P})\right|_{W}\right)
$$

(e.g., [N2]) and there exists an element X_{i} in the set $\left\{X_{1}, \ldots, X_{m}\right\}$ which principally generates \mathfrak{P}, for \mathfrak{P} which is ramified over $\mathfrak{P} \cap \mathcal{O}(W)^{L}$ (i.e., e($\mathfrak{P}, \mathfrak{P} \cap$ $\left.\left.\mathcal{O}(W)^{L}\right)>1\right)$.

Lemma 3.1.2. The following conditions (1) and (2) are equivalent for (W, L) :
(1) The representation (W, L) is cofree.
(2) There exist the decomposition $\{1, \ldots, m\}=J_{1} \sqcup$ $\cdots \sqcup J_{l}$ (disjoint union) to nonempty subsets J_{i} and integers $a_{i} \in \mathbf{N}(1 \leq i \leq m)$ such that

$$
\bigotimes_{j=1}^{l}\left(K\left[\prod_{i \in I_{j}} X_{i}^{a_{i}}\right]\right)=\mathcal{O}(W)^{L}
$$

In case where L is connected, the conditions (1) and (2) are equivalent to
(3) (W, L) is equidimensional.

Proof. In fact, suppose that (1) holds. Then $\left(W, L^{0}\right)$ is equidimensional, which implies that $\left(W, L^{0}\right)$ is cofree (cf. [W]). Thus there are a sum

$$
\{1, \ldots, m\}=J_{1} \sqcup \cdots \sqcup J_{l} \text { (disjoint union) }
$$

of non-empty subsets J_{i} and $b_{i} \in \mathbf{Z}_{0}(1 \leq i \leq m)$ satisfying

$$
\mathcal{O}(W)^{L^{0}}=\bigotimes_{j=1}^{l}\left(K\left[\prod_{i \in J_{j}} X_{i}^{b_{i}}\right]\right)
$$

(cf. [W, N1]). By the complete reducibility, we see that $\left(W / / L^{0}, L / L^{0}\right)$ is cofree. Since $W / / L^{0} \cong \mathbf{A}^{l}$ and L / L^{0} is finite, the action of L / L^{0} on the local ring of $W / / L^{0}$ at the vertex induces an action of a finite group generated by pseudo-reflections on its Zariski tangent space (cf. [S1]). Hence the condition (2) holds. The implication $(2) \Rightarrow(1)$ can be easily shown. For the last assertion, see [W].

Lemma 3.1.3. For any closed subgroups D_{i} of $D_{\left\{X_{i}\right\}}(W)(i=1,2)$, if $\mathcal{O}(W)^{D_{1}}=\mathcal{O}(W)^{D_{2}}$ and $\left(W, D_{1}\right)$ is stable, then $D_{1}=D_{2}$.

Proof. By the stability of $\left(W, D_{1}\right)$, we see that

$$
\prod_{i=1}^{m} X^{c_{i}} \in \mathcal{O}(W)^{D_{1}}
$$

for some $c_{i} \in \mathbf{N}(1 \leq i \leq m)$, which implies that $\left(W, D_{2}\right)$ is also stable. Then, since $\mathcal{Q}\left(\mathcal{O}(W)^{D_{i}}\right)=$ $\mathcal{Q}(\mathcal{O}(W))^{D_{i}}$, the assertion follows from the character theory of diagonalizable groups over the field K of characteristic zero.

Lemma 3.1.4. Let $\{1, \ldots, m\}=J_{1} \sqcup \cdots \sqcup J_{l}$ (disjoint union) be the decomposition to non-empty subsets J_{i} and $b_{i} \in \mathbf{N}(1 \leq i \leq m)$ any integers. Then there is a unique closed subgroup D in $D_{\left\{X_{i}\right\}}(W)$ such that

$$
\mathcal{O}(W)^{D}=\bigotimes_{j=1}^{l}\left(K\left[\prod_{i \in J_{j}} X_{i}^{b_{i}}\right]\right) \subseteq \mathcal{O}(W)
$$

Proof. Let D denote the stabilizer of $D_{\left\{X_{i}\right\}}(W)$ at the set $\left\{\prod_{i \in J_{j}} X_{i}^{b_{i}} \mid 1 \leq j \leq l\right\}$ under the natural action of $D_{\left\{X_{i}\right\}}(W)$ on $\mathcal{O}(W)$. As

$$
\begin{aligned}
& K\left[\prod_{i \in J_{j}} X_{i}^{b_{i}}, \mid 1 \leq j \leq l\right] \\
& \quad=K\left[\prod_{i \in J_{j}} X_{i}^{b_{i}}, 1 / \prod_{i \in J_{j}} X_{i}^{b_{i}} \mid 1 \leq j \leq l\right] \cap \mathcal{O}(W)
\end{aligned}
$$

we must have

$$
\mathcal{O}(W)^{D}=\bigotimes_{j=1}^{l}\left(K\left[\prod_{i \in J_{j}} X_{i}^{b_{i}}\right]\right) \subseteq \mathcal{O}(W)
$$

On the other hand, denoting by D_{j} the stabilizer of $D_{\left\{X_{i}\right\}}(W)$ at the set $\left\{X_{i} \mid i \notin J_{j}\right\}$, we have

$$
K\left[X_{i} \mid i \in J_{j}\right]^{D_{j} \cap D}=K\left[\prod_{i \in J_{j}} X_{i}^{b_{i}}\right]
$$

Thus we must have

$$
\mathcal{O}(W)^{\left(\prod_{j=1}^{l} D_{j}\right) \cap D}=\bigotimes_{j=1}^{l}\left(K\left[\prod_{i \in J_{j}} X_{i}^{b_{i}}\right]\right)
$$

which implies $D=\left(\prod_{j=1}^{l} D_{j}\right) \cap D$. Consequently (W, D) is stable. The uniqueness of D follows from this and (3.1.3).

Lemma 3.2. Under the same circumstances as in the first paragraph in (2.8), let $\widetilde{\phi}: \widetilde{H} \rightarrow G L(W)$ be a faithful representation of a diagonalizable group \widetilde{H} such that $\left.\left.H\right|_{W} \subseteq \widetilde{H}\right|_{W}$. In the case where the condition (2) in (2.5) holds, the last equality in (1) in (2.5) holds if and only if the canonical quotient morphism

$$
\pi_{W / / H, \widetilde{H} / H}: W / / H \rightarrow W / / \widetilde{H}
$$

is divisorially unramified (for definition, cf. [N2]).
Proof. Since $W \rightarrow W / / H$ is no-blowing-up of codimension one (cf. (1.1)), we see

$$
\operatorname{Ht}_{1}\left(\mathcal{O}(W), \mathcal{O}(W)^{\widetilde{H}}\right) \subseteq \operatorname{Ht}_{1}\left(\mathcal{O}(W), \mathcal{O}(W)^{H}\right)
$$

On the other hand, for any $\mathfrak{Q} \in \operatorname{Ht}_{1}\left(\mathcal{O}(W), \mathcal{O}(W)^{H}\right)$ such that $\left.I_{H}(\mathfrak{Q})\right|_{W} \neq\{1\}$, as in (2.8.1), we see that \mathfrak{Q} is generated by the element of W^{\vee} which is a relative invariant of \widetilde{H}. Thus, since (W, \widetilde{H}) is stable, the restriction $\mathfrak{Q} \cap \mathcal{O}(W)^{\widetilde{H}}$ is non-zero. The cofreeness of (W, \widetilde{H}) implies that $W \rightarrow W / / \widetilde{H}$ is equidimensional, and so is $W / / H \rightarrow W / / \widetilde{H}$. Consequently, \mathfrak{Q} is a member of $\operatorname{Ht}_{1}\left(\mathcal{O}(W), \mathcal{O}(W)^{\widetilde{H}}\right)$. The equivalence in the assertion in (3.2) easily follows from the above observation and [N3].

Proof of (2.6). We use the notation in (3.1). The character
$\mu_{\pi_{\mathcal{O}(W) \cdot X_{i}}}: I_{H}\left(\mathcal{O}(W) \cdot X_{i}\right) \ni \sigma \mapsto \sigma\left(X_{i}\right) / X_{i} \in \mathbf{U}(K)$
can be identified with the restriction of $\operatorname{det}_{W} \vee$. So, using the notation in (1.4) of [N3], we see

$$
t_{\mathcal{O}(W) \cdot X_{i}}\left(\left.\operatorname{det}_{W}\right|_{H}\right)=e_{i}-1
$$

where $e_{i}=\sharp\left(\left.I_{H}\left(\mathcal{O}(W) \cdot X_{i}\right)\right|_{W}\right)$. As $\mathcal{O}(W)^{H} \hookrightarrow$ $\mathcal{O}(W)$ is no-blowing-up of codimension one (for definition, cf. $[\mathrm{F}]$), we see that

$$
\mathcal{O}(W)_{\left.\operatorname{det}_{W}\right|_{H}} \cong \mathcal{O}(W)^{H}
$$

if and only if

$$
\prod_{i=1}^{l} X_{i}^{e_{i}-1} \in \mathcal{O}(W)_{\left.\operatorname{det}_{W}\right|_{H}}
$$

(e.g., [N3]). If these conditions are satisfied, then

$$
\mathcal{O}(W)_{\left.\operatorname{det}_{W}\right|_{H}}=\mathcal{O}(W)^{H} \cdot \prod_{i=1}^{l} X_{i}^{e_{i}-1}
$$

Clearly, since $\left.\prod_{i=1}^{l} X_{i} \in \mathcal{O}(W) \operatorname{det}_{W \vee}\right|_{H}$, the affine variety $W / / H$ is Gorenstein if and only if

$$
\prod_{i=1}^{l} X_{i}^{e_{i}} \in \mathcal{O}(W)^{H}
$$

Suppose that the condition (2) holds, i.e., (W, \widetilde{H}) is a canonical cofree embedding of (W, H). Then, by (3.1.2), we have

$$
\bigotimes_{j=1}^{l}\left(K\left[\prod_{i \in J_{j}} X_{i}^{a_{i}}\right]\right)=\mathcal{O}(W)^{\widetilde{H}}
$$

for some decomposition

$$
\{1, \ldots, m=\operatorname{dim} W\}=J_{1} \sqcup \cdots \sqcup J_{l} \text { (disjoint union) }
$$

to nonempty subsets and $a_{i} \in \mathbf{N}$. Since

$$
\mathrm{e}\left(\mathcal{O}(W) \cdot X_{i}, \mathcal{O}(W) \cdot X_{i} \cap \mathcal{O}(W)^{\widetilde{H}}\right)=a_{i}
$$

by (2.5) and (3.1.1), we must have

$$
a_{i}=e_{i}\left(=\sharp\left(\left.I_{H}\left(\mathcal{O}(W) \cdot X_{i}\right)\right|_{W}\right)\right),
$$

which implies $\prod_{i=1}^{m} X_{i}^{e_{i}} \in \mathcal{O}(W)^{\widetilde{H}}$. From this and the observation of the former paragraph, we have just shown the condition (1) is satisfied.

Conversely, suppose that the condition (1) holds. Then

$$
\begin{array}{r}
\prod_{i=1}^{m} X_{i}^{e_{i}} \in \mathcal{O}(W)^{H} \subseteq \mathcal{O}(W)^{\mathcal{R}_{W}(H)} \\
=K\left[X_{1}^{e_{1}}, \ldots, X_{l}^{e_{m}}\right]
\end{array}
$$

We can uniquely express this monomial as a product $\prod_{j=1}^{l} M_{j}$ of elements M_{j} 's which are members of the unique minimal system of generators of $\mathcal{O}(W)^{H}$ consisting of monomials of $\left\{X_{1}, \ldots, X_{m}\right\}$. Obviously there exists the decomposition

$$
\{1, \ldots, m\}=J_{1} \sqcup \cdots \sqcup J_{l} \text { (disjoint union) }
$$

to nonempty subsets J_{j} such that $\prod_{i \in J_{j}} X_{i}^{e_{i}}=M_{j}$ $(1 \leq j \leq l)$. Let \widetilde{H} be the stabilizer of $D_{\left\{X_{i}\right\}}(W)$
at $\left\{M_{j} \mid 1 \leq j \leq l\right\}$. By (3.1.4), the representation (W, \widetilde{H}) is stable and cofree. Since $\mathcal{O}(W)^{H} \hookrightarrow$ $\mathcal{O}(W)$ is no-blowing-up of codimension one, applying (3.1.1) to (W, H) and (W, \widetilde{H}), we see that $W / / H \rightarrow$ $W / / \widetilde{H}$ is divisorially unramified, which proves (2).

The remainder of the assertions in this theorem follows from (3.2) and the property of \widetilde{H}.

References

[F] R. M. Fossum, The divisor class group of a Krull domain, Springer, New York, 1973.
[D] V. I. Danilov, The geometry of toric varieties, Uspekhi Mat. Nauk 33 (1978), no. 2(200), 85-134, 247.
[N1] H. Nakajima, Equidimensional actions of algebraic tori, Ann. Inst. Fourier (Grenoble) 45 (1995), no. 3, 681-705.
[N2] H. Nakajima, Reduced ramification indices of quotient morphisms under torus actions, J. Algebra 242 (2001), no.2, 536-549.
[N3] H. Nakajima, Divisorial free modules of relative invariants on Krull domains, J. Algebra 292 (2005), no. 2, 540-565.
[N4] H. Nakajima, Minimal presentations of torus invariants in paralleled linear hulls. (to appear).
[S1] J. -P. Serre, Groupes finis d'automorphismes d'anneaux locaux réguliers, in Colloq. d'Alg., E.N.S., Exp.8, Secrétariat math., Paris, 1967.
[S2] R. P. Stanley, Hilbert functions of graded algebras, Advances in Math. 28 (1978), no. 1, 5783.
[TE] G. Kempf et al., Toroidal embeddings. I, Lecture Notes in Math., 339, Springer, Berlin, 1973.
[W] D. L. Wehlau, A proof of the Popov conjecture for tori, Proc. Amer. Math. Soc. 114 (1992), no. 3, 839-845.

