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Abstract: In this paper we present a necessary and sufficient condition for a C2 Teichmüller
mapping to be ρ-harmonic. By this result we show that there is no solution to the Schoen conjecture
in the class of C2 Teichmüller mappings. We also obtain two characterizations for π-harmonic
Teichmüller mappings.
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1. Introduction. Let Ω and Ω′ be two Jor-
dan domains of the complex plane C. ρ(w)|dw|2 is a
singular metric of Ω′ if its metric density ρ is a non-
negative smooth function and admits isolated zeros
on Ω′. Given a holomorphic quadratic differential
ψ(w)dw2 on Ω′, |ψ(w)||dw|2 defines a singular flat
metric with singularities at the zeros of ψ. In this
paper, a C2 mapping f : Ω → Ω′ is said to be har-
monic with respect to ρ (shortly ρ-harmonic) if it
satisfies

∂z̄(ρ(f)fz f̄z) = 0,(1.1)

that is, the Hopf differential ρ(f)fz f̄zdz
2 of f is holo-

morphic in Ω. Gromov and Schoen [4] first system-
atically studied harmonic mappings with respect to
a singular metric in connection with arithmetic su-
perrigidity.

If a ρ-harmonic mapping f from Ω onto Ω′ is also
quasiconformal, then we call it a ρ-harmonic qua-
siconformal mapping (abbreviatedly ρ-HQC map-
ping). Particularly, we say that f is a π-HQC map-
ping if ρ is a constant. It is well known that the
Jacobian Jf of each ρ-HQC mapping f is always pos-
itive since f is a C2 quasiconformal mapping. The
Beltrami coefficient µf of a ρ-HQC mapping f is of
the form

µf = |µf | ϕ|ϕ| ,

where ϕ = ρ(f)fz f̄z (see [16]).
A ρ-HQC mapping f is a Teichmüller mapping

if |µf | is a constant k with 0 < k < 1, then we call
f a ρ-harmonic Teichmüller mapping and ϕ(z)dz2
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the associated holomorphic quadratic differential of
f . In particular, f is said to be a π-harmonic Te-
ichmüller mapping if ρ is a constant. Let φ(w)dw2 be
the associated holomorphic quadratic differential of
f−1, then f induces a singular flat metric |φ(w)||dw|2
on Ω′. One can refer to [5, 6] for some results about
harmonic Teichmüller mappings with respect to sin-
gular flat metrics.

Beurling and Ahlfors [2] proved that a home-
omorphism from the unit circle onto itself admits
a quasiconformal extension from the unit disk onto
itself if and only if it is quasisymmetric. In order
to prove that there always exists an extension with
good properties, Schoen [19] posed the following con-
jecture.

Schoen conjecture. The harmonic quasi-
conformal homeomorphisms with respect to the
Poincaré metric from the unit disk onto itself are
parameterized by the set of quasisymmetric homeo-
morphisms of the unit circle onto itself.

There are some partial results on the above con-
jecture. When the boundary mapping is also suf-
ficiently differentiable, Li and Tam [7] proved that
there exists a HQC mapping with respect to the
Poincaré metric. Later, Li [8] and Markovic [11]
generalized their result. Since Teichmüller mappings
play a vital role in the theory of quasiconformal map-
pings, the following question is natural.

Question 1. Does there exist a solution to
the Schoen conjecture in the class of C2 Teichmüller
mappings?

It is equivalent to ask whether a Teichüller map-
ping can be a HQC mapping with respect to the
Poincaré metric. Namely, does there exist a HQC
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mapping with respect to the Poincaré metric such
that the modulus of its Beltrami coefficient is a con-
stant? In order to deal with it, we only need to
answer the following question.

Question 2. For a C2 Teichmüller mapping
f , does there uniquely exist a metric ρ(w)|dw|2 such
that f is ρ-harmonic?

In Section 2, we will answer Question 2 (see
Theorem 2.1). In fact we will prove that a C2 Te-
ichmüller mapping f is harmonic with respect to a
singular flat metric, which is determined by the as-
sociated holomorphic quadratic differential of f−1.
Then we show that such metric is unique ignoring
multiplying a positive constant. As an application
of Theorem 2.1 to the Schoen conjecture, we will
give a negative answer to Question 1 in Section 3.

Martio [12] first studied the existence of π-HQC
mappings. Recently, there is much progress in pre-
scribing the properties of π-HQC mappings in [3, 9,
10, 13–15]. As another application of Theorem 2.1,
we will prescribe some properties of a π-harmonic Te-
ichmüller mapping in Section 4. It is well known that
a univalent π-harmonic mapping f has a canonical
representation f = h+ ḡ where g and h are holomor-
phic. Furthermore, g = ᾱh if f is also a Teichmüller
mapping, where h is a conformal mapping and α is
a constant such that 0 < |α| < 1.

2. A necessary and sufficient condi-
tion for a C2 Teichmüller mapping to be ρ-
harmonic. In this section, we will prove the exis-
tence for singular metrics by Lemma 2.1, and then
obtain a sufficient condition for a C2 Teichmüller
mapping to be ρ-harmonic. By Lemma 2.2, we show
that the condition is also necessary.

Lemma A. ([17, 18]) If f is a Teichmüller
mapping from the unit disk ∆ onto itself then its
inverse mapping g = f−1 is also a Teichmüller map-
ping.

Remark. For a Teichmüller mapping from Ω
onto Ω′ the result of Lemma A also holds.

Lemma 2.1. If f is a C2 Teichmüller map-
ping from Ω onto Ω′ and the associated holomor-
phic quadratic differential of its inverse mapping is
φ(w)dw2 then f is c|φ|-harmonic, where c is a posi-
tive constant.

Proof . Denote by F the inverse mapping of f .
We know that F is also a Teichmüller mapping by
Lemma A. Let φ(w)dw2 be the associated holomor-
phic quadratic differential of F . Set ψ2(w) = φ(w).

Then there exists a constant k, 0 < k < 1, such that

µF =
Fw̄

Fw
= k

φ

|φ| = k
ψ2

|ψ2| = k
ψ

ψ
.(2.1)

By differentiating both sides of (2.1) in w, we have

Fww =
Fw̄wψ

kψ
+
Fw̄ψ

′

kψ
.(2.2)

Hence

(c|φ(f)|fzfz̄)z̄ = − ck2

(1 − k2)2
(

|φ|
FwFw̄

◦ f)z̄

= − ck

(1 − k2)2
(
φ

F 2
w

◦ f)z̄.

Since Fw ◦ f = fz/Jf and −Fw̄ ◦ f = fz̄/Jf (see [1,
p. 8]), we have

(c|φ(f)|fzfz̄)z̄ =
2ck

(1 − k2)2
·(2.3)

(
ψψ′F 2

wFw̄ − ψ2FwFw̄Fww + ψ2F 2
wFww̄

JFF 4
w

◦ f).

So it follows from (2.1) and (2.2) that

(c|φ(f)|fzfz̄)z̄ = 0.

Therefore f is a c|φ|-harmonic mapping, and the
proof is completed.

Next we will prove that the metric is unique
ignoring multiplying a positive constant.

Lemma 2.2. If f is a ρ-harmonic Teichmüller
mapping from Ω onto Ω′, then

ρ(w) = c|φ(w)| (w ∈ Ω′),(2.4)

where φ(w)dw2 is the associated holomorphic
quadratic differential of f−1, and c is a positive con-
stant.

Proof . By the hypothesis we have

(ρ(f)fzfz̄)z̄ = 0 (z ∈ Ω).(2.5)

Let F be the inverse mapping of f . We assume that
Jf and JF are the Jacobians of f and F , respectively.
Since Fw ◦ f = fz/Jf and −Fw̄ ◦ f = fz̄/Jf , the
relation (2.5) is equivalent to

(2.6)(
ρ(w)FwFw̄

J2
F

◦ f
)

z

= 0 (w = f(z), z ∈ Ω).
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By the chain rule we have

(
ρFwFw̄

J2
F

)w̄ · (−Fw̄

JF
)+(2.7)

(
ρFwFw̄

J2
F

)w · (Fw

JF
) = 0 (w ∈ Ω′).

Lemma A implies that F is also a Teichmüller
mapping from Ω′ onto Ω. Set φ(w) = ψ2(w), then
the Beltrami coefficient of F is of the form

µF =
Fw̄

Fw
= k

φ

|φ| = k
ψ2

|ψ2| = k
ψ

ψ
.(2.8)

By the relation
k2

µF
= µF , we reduce (2.7) to

µF (
ρ

FwFw̄
)w = (

ρ

FwFw̄
)w̄.

Hence

µF
ρwFwFw̄ − ρ(FwwFw̄ + FwFw̄w)

(FwFw̄)2
=

ρw̄FwFw̄ − ρ(Fww̄Fw̄ + FwFw̄w̄)
(FwFw̄)2

.

By direct calculations it follows that

(µFρw − ρw̄)FwFw̄(2.9)

+ ρ(FwFw̄w̄ − µFFw̄Fww) = 0.

From (2.8) we have

Fww =
Fw̄wψ

kψ
+
Fw̄ψ

′

kψ
(2.10)

and

Fw̄w̄ =
kFw̄wψ

ψ
+
kFwψ′

ψ
.(2.11)

Thus by (2.10) and (2.11), the relation (2.9) can be
simplified as

µF ρw − ρw̄

ρ
= µF

ψ′

ψ
− ψ′

ψ
.

Since ρ is a real function we obtain

µF (log
ρ

ψ
)w = (log

ρ

ψ
)w.(2.12)

Noting that 0 < |µF | = k < 1, we have

(log
ρ

ψ
)w = 0,

that is,
(log

ρ

ψ̄
)w̄ = 0.

So ρ/ψ is analytic, namely,
ρ

|ψ|2ψ is analytic. There-

fore ρ/|ψ|2 (i. e., ρ/|φ| ) is a positive constant.
Combining Lemma 2.1 with Lemma 2.2, we ob-

tain
Theorem 2.1. If f is a C2 Teichmüller map-

ping from Ω onto Ω′ and the associated holomor-
phic quadratic differential of its inverse mapping is
φ(w)dw2 then f is a ρ-harmonic mapping if and only
if ρ = c|φ|, where c is a positive constant.

3. ρP -harmonic Teichmüller mappings.
In this section we will give a negative answer to Ques-
tion 1. In fact we will obtain a more general re-
sult (see Theorem 3.1). The Poincaré metric ρP |dz|2
of the unit disk of ∆ is |dz|2/(1 − |z|2)2. Gener-
ally, the Poincaré metric ρP |dw|2 of Ω is given by
|φ′(w)|2|dw|2/(1 − |φ(w)|2)2, where φ is a conformal
mapping from Ω onto ∆. Let Ωi (i = 0, 1, 2, 3) be
Jordan domains of the complex plane C.

Lemma 3.1. Let φ be a conformal mapping
from Ω2 onto Ω3 and ϕ be a conformal mapping from
Ω0 onto Ω1. If F : Ω1 → Ω2 is harmonic with respect
to ρ2, then φ ◦F is harmonic with respect to ρ3, and
F ◦ϕ is harmonic with respect to ρ2, where ρi is the
Poincaré metric density of Ωi (i=2,3), respectively.

Proof . If F is harmonic with respect to ρ2, then
by definition ρ2(F (z))FzFz̄ is holomorphic in Ω1. If
φ is a conformal mapping from Ω2 onto Ω3, then φ◦F
is a C2 homeomorphism from Ω1 onto Ω3 and

ρ3(φ ◦ F )(φ ◦ F )z(φ ◦ F )z̄ = ρ3(φ ◦ F )|φ′(w)|2FzFz̄

= ρ3(φ(w))|φ′(w)|2FzFz̄ =
ρ2(w)
|φ′(w)|2 |φ

′(w)|2FzFz̄

= ρ2(F (z))FzFz̄ ,

where w = F (z). Thus, ρ3(φ ◦ F )(φ ◦ F )z(φ ◦ F )z̄ is
holomorphic in Ω1, that is, φ ◦ F is harmonic with
respect to ρ3.

Let ϕ be a conformal mapping from Ω0 onto Ω1.
We therefore obtain that F ◦ ϕ is a C2 homeomor-
phism of Ω0 onto Ω2 and

ρ2(F ◦ ϕ(ζ))(F ◦ ϕ)ζ(F ◦ ϕ)ζ̄

= ρ2(F ◦ ϕ(ζ))Fz(ϕ(ζ))ϕ′(ζ)Fz̄(ϕ(ζ))ϕ′(ζ)

= ρ2(F (z))Fz(z)Fz̄(z)(ϕ′(ζ))2,
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where z = ϕ(ζ). Since ρ2(F )FzFz̄ is holomorphic,
we can write ψ(z) = ρ2(F )FzFz̄ . So ψ(ϕ(ζ)) is holo-
morphic in Ω0. Thus ψ(ϕ(ζ))(ϕ′(ζ))2 is holomorphic
in Ω0, that is, ρ2(F ◦ ϕ(ζ))(F ◦ ϕ)ζ(F ◦ ϕ)ζ̄ is holo-
morphic in Ω0. Hence F ◦ϕ is harmonic with respect
to ρ2.

Theorem 3.1. There does not exist any ρP -
harmonic Teichmüller mapping from Ω onto Ω′,
where ρP is the Poincaré metric density of Ω′.

Proof . By Lemma 3.1, we can choose Ω′ to be
the unit disk ∆. Suppose that there exists a ρP -
harmonic Teichmüller mapping of Ω onto ∆. Then
from Theorem 2.1, there exists a holomorphic func-
tion φ(w), w ∈ ∆ such that

1/(1 − |w|2)2 = c|φ(w)|,(3.1)

where c is a positive constant.
Write ψ2(w) = φ(w). Differentiating both sides

of (3.1) in w, we obtain

cψ′ = 2
w

ψ

1
(1 − |w|2)3 .(3.2)

By differentiating in w again, we have

2
ψ(1 − |w|2)3 (2 +

ψ′

ψ
w − 3

1 − |w|2 ) = 0.

Thus

ψ′

ψ
w =

3
1 − |w|2 − 2.(3.3)

The left side of (3.3) is a meremorphic function but
the right side of (3.3) is a real function and is not
a constant, a contradiction. The proof is completed.

4. π-harmonic Teichmüller mappings.
In this section we will give another application of
Theorem 2.1 to present some characterizations of π-
harmonic Teichmüller mappings.

Theorem 4.1. If f is a C2 Teichmüller map-
ping from Ω onto Ω′ then the following conditions
are equivalent

(i) f is π-harmonic;
(ii) the Beltrami coefficient of its inverse map-

ping is a constant;
(iii) f is of the form f = h + αh̄, where α is

a constant with 0 < |α| < 1 and h is a conformal
mapping in Ω.

Proof . It is obvious that (iii) implies (i). Sup-
pose that f is a C2 Teichmüller mapping from Ω
onto Ω′. Let F be the inverse of f and φ(w)dw2 the
associated holomorphic quadratic differential of F .
It follows from Theorem 2.1 that f is π-harmonic if
and only if φ is a constant. Thus we see that (i) is
equivalent to (ii).

Let µF be the Beltrami coefficient of the inverse
mapping F . Suppose that µF is a constant −b with
|b| = k. Using the formulas Fw ◦ f = fz/Jf and
−Fw̄ ◦ f = fz̄/Jf again, we have

−fz̄

fz

= µF ◦ f = −b.

Since f is a univalent π-harmonic mapping, there
exist two holomorphic functions m and n such that
f = m+ n̄. Thus

n′ = b̄m′.(4.1)

So n = b̄m + d, where d is a constant. Therefore
f = m + b̄m+ d. Set h = m + (d̄ − bd)/(1 − |b|2).
Then there exists a holomorphic function h such that
f = h+ bh̄, where |b| = k and 0 < k < 1.

For two arbitrary points z1 and z2 in Ω, we get

f(z1) − f(z2) = h(z1) − h(z2) + b(h(z1) − h(z2)).

Hence f is univalent if and only if h is conformal in
Ω. Therefore there exists a conformal mapping h in
Ω such that f = h+bh̄, where |b| = k and 0 < k < 1.
Thus (ii) implies (iii).
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