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Abstract: Using the splitting-up method, we establish a new existence result for an initial
boundary value problem for the doubly degenerate stochastic quasilinear parabolic equation
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1. Introduction. Let D be a bounded do-
main in the Euclidean space Rn (n ≥ 2) with a
sufficiently smooth boundary ∂D. For 0 < T <

∞, we denote by QT the cylinder D × (0, T ). Let(
Ω,F, {Ft}0≤t≤T ,P

)
be a complete filtered proba-

bility space on which are defined the one-dimensional
Wiener processes W l

t such that ({Ft} , 0 ≤ t ≤ T ) is
a natural filtration of W l

t (t), augmented by all P-
negligeable sets, we denote by ω the sample points
from Ω. In QT ×Ω, we investigate the initial bound-
ary value problem for the doubly degenerate quasi-
linear stochastic parabolic equation

d
(|y|α−2

y
) − [ n∑

i=1

∂

∂xi

(∣∣∣∣∂y∂x
∣∣∣∣
p−2

∂y

∂xi

)
(1)

− g(t, y)
]
dt

=
d∑

l=0

hl(t, y)dW l
t , in QT ×Ω,

y(x, t, ω) = 0 on ∂D × (0, T )× Ω,(2)

y(x, 0, ω) = y0(x, ω) in D × Ω.(3)

We assume that there exists some non negative con-
stants c1, c2, cl3, cl4 such that the functions g and hl

satisfy
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c1 |y|2µ−2
y ≤ g(t, y) ≤ c2 |y|2µ−2

y,(4)

cl3 |y|σl−1
y ≤ hl(t, y) ≤ cl4 |y|σl−1

y,(5)

and α, µ, σl (l = 1, . . . , d) and p are some nonnega-
tive numbers satisfying the restrictions: 1 < α ≤ 2,
p ≥ 2,

(6) σl ≤ min {2µ/α′, α− 1} , ∀l; p ≥ 2µ ≥ 1.

Here and in the sequel r′ will stand for the Hölder
conjugate of a number r > 1, i.e., r′ = r/(r − 1),
∂u/∂x denotes the gradient vector of u. From now
on, we supress the dependence on t when writing g
and hl. Denote
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n∑

i=1

∂

∂xi

(∣∣∣∣∂y∂x
∣∣∣∣
p−2

∂y

∂xi

)
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The aim of the present work is to establish an ex-
istence result for the problem (1)–(3). The equation
(1) is degenerate when y = 0 or when the gradient
∂y/∂x vanishes. In the deterministic case (i.e., cl4 =
0), equations of this type are known to be of great im-
portance in the applied sciences. Indeed they model
processes ranging from the theory of non newtonian
fluids to population dynamics; detailed informations
can be found in the survey [4] by Kalashnikov. Initial
boundary value problems of equation (1) are natu-
rally expected to describe some stochastic counter-
parts of the deterministic known models.
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In the deterministic case existence results for
degenerate quasilinear parabolic equations were ob-
tained by many authors (see e.g., [1, 3, 9, 12], just
to mention a few). For existence results of monotone
stochastic nonlinear parabolic equations (when α =
2) we refer for instance to [2, 5, 7, 8].

We use the splitting-up method which seems to
be the most effective tool for establishing the ex-
istence of a solution to problem (1)–(3). The tra-
ditional methods of semi-discretization as in [9] or
Galerkin’s method as in [8], or in [5] appear to be in-
effective; the nature of the nonlinearity in equation
(1) coupled with the presence of the stochastic non-
linear term seems to be the main stumbling block.
The simpler case when p = 2 was considered by the
author in [10]. The full-length version of this note
will appear elsewhere.

2. Notations, formulation of main and
auxiliary results. We consider the well-known

function spaces Lq(D), W 1
q (D),

o

W 1
q (D) with q ≥ 1.

By W−1
q′ (D), we denote the dual of

o

W 1
q (D) for q > 1.

Let X be a Banach space. For r, q ≥ 1, we denote by
Lr,q (0, T,Ω, X) the space of functions u = u(x, t, ω)
with values in X defined on [0, T ]×Ω and such that

1) u is measurable with respect to (t, ω) and for
each t, u is Ft-measurable.

2) u ∈ X for almost all (t, ω) and

‖u‖Lr,q(0,T,Ω,X) =

(
E

(∫ T

0

‖u‖q
X dt

)r/q
)1/r

<∞,

where E denotes the mathematical expectation.
The space Lr,q (0, T,Ω, X) so defined is a

Banach space. If r = q, we shall simply write
Lr (0, T,Ω, X) for Lr,r (0, T,Ω, X). When q = ∞,
the norm in Lr,∞ (0, T,Ω, X) is given by

‖u‖Lr,∞(0,T,Ω,X) =
(
E sup

0≤t≤T
‖u‖r

X

)1/r

.

The space of functions u with values in X defined on
[0, T ]× Ω such that

sup
0≤t≤T

E ‖u(t)‖q
X <∞

is denoted by L∞,q (0, T,Ω, X). For q ≥ 1, we
also consider the space Lq(0, T, X) of functions ϕ =
ϕ(x, t) with values in X defined on [0, T ] and such
that

‖u‖Lq(0,T,X) =
(∫ T

0

‖u‖q
X dt

)1/q

<∞.

Definition 1. By a solution of problem (1)–
(3) we shall mean a function y(t, ω) such that

1.

y ∈ Lp

(
0, T,Ω,

o

W 1
p (D)

)
∩ Lα,∞ (0, T,Ω, Lα(D))

∩ L2µ (0, T,Ω, L2µ(D)) ;

2. for almost all (t, ω) ∈ [0, T ]×Ω, the relation

|y(t, ω)|α−2 y(t, ω) − |y0(t, ω)|α−2 y0(7)

+
∫ t

0

A (y(τ )) dτ +
∫ t

0

g (y(τ )) dτ

=
d∑

l=0

∫ t

0

hl (y(τ )) dW l
τ ,

holds as an equality of elements of W−1
p (D).

In this work we prove
Theorem 2. Let the conditions (4), (5) and

(6) be satisfied. Assume that

P
{
ω : y0 ∈

o

W 1
p (D) ∩ Lα(D) ∩ L2µ(D)

}
= 1.

Then there exists a function

y ∈ Lp

(
0, T,Ω,

o

W 1
p (D)

)
∩ Lα,∞ (0, T,Ω, Lα(D))

∩ L2µ (0, T,Ω, L2µ(D)) ,

solution of the problem (1)–(3) for almost every ω ∈
Ω.

Remark 3. Arguing as in [5, 8], it is possible
to show that |y|α−2

y has a continuous modification
in t ∈ [0, T ]. Therefore y also has a continuous mod-
ification in t. Consequently by identifying y with
its continuous modification, we see that the initial
condition (3) is meaningful. In the sequel we shall
assume such an identification.

The proof of the theorem will involve the fol-
lowing two compactness results. In analogy with
[6](Chap. 1, Lemma 1.3) we have

Lemma 4. Let (gκ)κ=1,2... and g be some
functions in Lq (0, T, S, Lq(D)) with q ∈ (1,∞) such
that

‖gκ‖Lq(0,T,S,Lq(D)) ≤ C, ∀κ
and as κ → ∞

gκ → g for almost all (x, t, ω) ∈ QT × Ω.

Then gκ weakly converges to g in Lq (0, T,Ω, Lq(D)).
The next result is from [11] (Section 5, Theo-

rem 5 and Remark 8.2). It refines an earlier result
due to Dubinskii [3].
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Lemma 5. Let B and B1 be some Banach
spaces such that B is continuously embedded into
B1and let Y be a subset of B such that λY ⊂ Y

for all λ ∈ R. Assume that Y is endowed with the
semi-norm Y 
 v →M(v) ∈ R+ such that

M (λv) = |λ|M(v),

and the set {v : v ∈ Y, M(v) ≤ 1} is relatively com-
pact in B.

Let q, q1 ∈ (1,∞). We define Lq(0, T, Y ) to be
the set of functions measurable with respect to t, and
with values in Y such that

‖u‖Lq(0,T,Y ) =
(∫ T

0

M [v(t)]q dt
)1/q

< C1.

Let V be a set bounded in Lq(0, T, Y ) such that

lim
θ→0

∫ T−θ

0

‖v(t + θ) − v(t)‖q1
B1
dt = 0,

uniformly for all v ∈ V . Then V is relatively compact
in Lq (0, T, B).

3. The splitting-up algorithm and a pri-
ori estimates. As from now we agree to denote
all non essential positive constants by C. Let k =
T/ (N + 1), where N = 0, 1, 2, . . . . We split the
interval [0, T ] into subintervals [rk, (r + 1) k[, r =
0, . . . , N and consider the number ρ ∈ (0, 1).

On the probability space
(
Ω,F, {Ft}0≤t≤T ,P

)
we define the stochastic processes yk and ỹk such
that for t ∈ (rk, (r + 1) k)

(8)
∂
(|yk|α−2

yk

)
∂t

+A (yk) + (1 − ρ)g (yk) = 0,

(9) yk (rk) = yr
k,

(10) d
(|ỹk|α−2

ỹk

)
+ ρg (ỹk) dt =

d∑
l=0

hl (yk) dW l
t ,

(11) ỹk (rk) = yk ((r + 1) k − 0) .

Next we set

(12) yr+1
k = ỹk ((r + 1) k − 0) ,

and we start with

(13) y0
k = ỹ0

k = y0;

the processes yk and ỹk are subject to the ho-
mogenous Dirichlet boundary condition (2) on ∂D×
(0, T )×Ω. The first problem is deterministic and is

known to be solvable under the boundary conditions
(2) (see e.g., [12]). By the substitution

w(t) = |ỹk(t)|α−2
ỹk(t),

equation (10) reduces to

dw+ ρg (|w|γ w) dt =
d∑

l=0

hl (yk) dW l
t ,(14)

t ∈ (rk, (r + 1) k) ,

where γ = (2 − α) /(α−1). In order to show that this
equation has a unique solution we use the vanishing
viscosity method coupled with the existence result of
[5]. The problem (8)–(9) is not uniquely solvable in
general. However the extraction of a suitable subse-
quence through a diagonalization process will do the
job. In the sequel we shall denote any such subse-
quence also by the symbol yk.

We have
Lemma 6. If

P
{
ω : ỹ0

k, y
0
k ∈

o

W 1
p (D) ∩ Lα(D) ∩ L2µ(D)

}
= 1,

and the conditions of Theorem 2 are met, then the
processes yk and ỹk satisfy the following statements.
The quantities

sup
0≤t≤T

E ‖yk(t)‖α
Lα(D) + E

∫ T

0

‖yk (s)‖p
o

W1
p (D)

ds(15)

+E

∫ T

0

‖yk (s)‖2µ
L2µ(D) ds,

(16)

sup
0≤t≤T

E ‖ỹk(t)‖α
Lα(D) + E

∫ T

0

‖ỹk (s)‖2µ
L2µ(D) ds,

are finite.

(17)

E

∫ T−θ

0

∥∥∥∆[|yk|α−2
yk(t)

]∥∥∥p′

W−1
p′ (D)

dt = O(θ),

(18)

E

∫ T−θ

0

∥∥∥∆[|ỹk|α−2
ỹk(t)

]∥∥∥p′

W−1
p′ (D)

dt = O (θ) ,

(19)

E
∥∥∥|yk(t)|α−2

yk(t) − |ỹk(t)|α−2
ỹk(t)

∥∥∥p′

W−1
p′ (D)

≤ Ck,

for all t ∈ [0, T ], where O(θ) → 0 as θ → 0 and

∆
[|zk|α−2

zk(t)
]

=: |zk|α−2
zk(t+ θ) − |zk|α−2

ỹk(t).
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Furthermore for every q ≥ α, we have

E sup
0≤t≤T

‖yk(t)‖2q
L2q(Ω)(20)

+ E sup
0≤t≤T

‖ỹk(t)‖2q
L2q(Ω) ≤ C, ∀t ∈ [0, T ] .

4. Sketch of the proof of Theorem 2.
By Lemma 6, we have the following convergences as
k → 0 (after extracting a suitable subsequence from
yk and ỹk that we denote again by the same symbols)

(21) yk ⇀ y weakly∗ in L∞,α (0, T,Ω, Lα(D)) ,

(22) yk(T ) ⇀ ȳ weakly∗ in Lα(D),

for almost all ω,

(23) yk ⇀ y weakly in L2µ (0, T,Ω, L2µ(D)) ,

(24) yk ⇀ y weakly in Lp

(
0, T,Ω,

o

W 1
p (D)

)
,

(25) ỹk ⇀ ỹ weakly∗ in L∞,α (0, T,Ω, Lα(D)) ,

(26) ỹk ⇀ ỹ weakly in L2µ (0, T,Ω, L2µ(D)) ,

(27) yk ⇀ y weakly∗ in Lλ,∞ (0, T,Ω, Lλ(D)) ,

(28) ỹk ⇀ ỹ weakly∗ in Lλ,∞ (0, T,Ω, Lλ(D)) ,

where λ ≥ 2α. Thus

y ∈ Lp

(
0, T,Ω,

o

W 1
p (D)

)
∩L∞,α (0, T,Ω, Lα(D))

∩ L2µ (0, T,Ω, L2µ(D)) ,

and

ỹ ∈ L2µ (0, T,Ω, L2µ(D)) ∩ L∞,α (0, T,Ω, Lα(D)) .

Furthermore

sup
0≤t≤T

E ‖y(t)‖α
Lα(D) + E

∫ T

0

‖y(s)‖p
o

W1
p (D)

ds

+E

∫ T

0

‖y(s)‖2µ
L2µ(D) ds,

sup
0≤t≤T

E ‖ỹ(t)‖α
Lα(D) + E

∫ T

0

‖ỹ‖2µ
L2µ(D) ds

are finite and

E

∫ T−θ

0

∥∥∥∆ [|y|α−2
y(t)

]∥∥∥p′

W−1
p′ (D)

dt = O(θ),

E

∫ T−θ

0

∥∥∥∆ [|ỹ|α−2
ỹ(t)

]∥∥∥p′

W−1
p′ (D)

dt = O(θ),

E
∥∥∥|y(t)|α−2

y(t) − |ỹ(t)|α−2
ỹ(t)

∥∥∥p′

W−1
p′ (D)

≤ Ck,

E sup
0≤t≤T

‖y(t)‖λ
Lλ(Ω) + E sup

0≤t≤T
‖ỹ(t)‖λ

Lλ(Ω) ≤ C.

We note that by (6) (2µ)′ ≥ p′. Thus g (yk)
is bounded in Lp′ (0, T,Ω, Lp′(D)); also σi ≤ α − 1,
hence by Lemma 6 hl (yk) is bounded in Lα(D) for
almost all t, ω and l = 1, . . . , d. From the above
convergences it therefore follows that there exist the
functions v, ṽ, f , ϕ, ϕ̃, ψl (l = 1, . . . , d) such that

(29)

|yk|α−2
yk → v weakly∗ in Lα′,∞ (0, T,Ω, Lα′(D)) ,

(30)

A (t, yk(t)) ⇀ f weakly in Lp′
(
0, T,Ω,W−1

p′ (D)
)
,

(31)

|ỹk|α−2
ỹk → ṽ weakly∗ in Lα′,∞ (0, T,Ω, Lα′(D)) ,

(32) g (ỹk) ⇀ ϕ̃ weakly in Lp′ (0, T,Ω, Lp′(D)) ,

(33) g (yk) ⇀ ϕ weakly in Lp′ (0, T,Ω, Lp′(D)) ,

(34)

hl (yk) ⇀ ψl weakly∗ in Lα′,∞ (0, T,Ω, Lα′(D)) .

Further since any strongly continuous linear operator
is weakly continuous, it follows from (34) that∫

D

d∑
l=0

hl (yk) dW l
t ⇀

∫
D

d∑
l=0

ψldW
l
t(35)

weakly in Lα′(D),

for almost all ω and t.
Next let

Y =
{
v : |v|α′−2

v ∈
o

W 1
p (D)

}
,

M(v) =
[∫

D

∣∣∣∣ ∂∂x
(
|v|α′−2

v
)∣∣∣∣

p

dx

]1/[(α′−1)p]
,

and set q = (α′ − 1)p. If q > 1, i.e., α < p+1, it fol-
lows that the set {v : v ∈ Y, M(v) ≤ 1} is relatively

compact in Lq(D), since
o

W 1
q (D) is compactly embed-

ded into Lq(D). Since p ≥ α, a simple verification
shows that q ≥ p′. Thus Lq(Ω) ⊂ Lp′ (Ω) ⊂W−1

p′ (Ω).
Therefore taking B = Lq(D) and B1 = W−1

p′ (D), we
get that B is continuously embedded into B1. Set-
ting vk = |yk|α−2

yk we see from Lemma 6 that vk lies
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in the set V defined in Lemma 5. Thus by Lemma 5
it follows that

vk → v strongly in Lq(0, T, Lq(D)),(36)

for almost all ω.
Thus

(37)

vk (., ω) → v (., ω) for almost all ω, as k → ∞.

Let δ be such that δ > max {p, 2α}. Then δ/(α −
1) > 2α since (α− 1) ∈ (0, 1]. Thus (20) implies
(38)

sup
0≤t≤T

E ‖vk(t)‖δ/(α−1)

Lδ/(α−1)(0,T,Lδ/(α−1)(D)) < C.

Since q = p/(α − 1) < δ/(α − 1) it follows that
‖vk(ω)‖q

Lq(0,T,Lq(D)) is equintegrable with respect to
ω. Then combining (37) and (38) and using Vitali’s
convergence theorem we have

vk → v strongly in Lq (0, T,Ω, Lq(D)) .

Consequently we get

(39) vk → v for almost all (x, t, ω) ∈ QT × Ω.

Now by (21), (39) and Lemma 4 we get that
(40)

v = |y|α−2
y for almost all (x, t, ω) ∈ QT ×Ω.

Analogously we obtain that for almost all (x, t, ω) ∈
QT ×Ω

ṽ = |ỹ|α−2
ỹ, ϕ = g(y),(41)

ϕ̃ = g (ỹ) , ψl = hl(y).

From (8)–(13) we see that yk and ỹk satisfy the equa-
tions

|yk(t)|α−2
yk(t) +

∫ t

0

A (yk) ds(42)

+ (1 − ρ)
∫ t

0

g (yk) ds+ ρ

∫ k[t/k]

0

g (ỹk) ds

=
∫ k[t/k]

0

h (yk) dW + |y0|α−2
y0,

and

|ỹk(t)|α−2
ỹk(t) + ρ

∫ t

0

g (ỹk) ds(43)

+ (1 − ρ)
∫ k[t/k]+k

0

g (yk) ds

+
∫ k[t/k]+k

0

A (yk) ds

=
∫ t

0

h (yk) dWs + |y0|α−2 y0,

where h(y)dWt =:
∑d

l=0 hl(y)dW l
t . By the estimate

(19), we have that

P
{
ω : |y|α−2

y = |ỹ|α−2
ỹ for almost all x, t

}
= 1.

Hence by the monotonicity of the function ζ →
|ζ|α−2

ζ we get

(44) P
{
ω : y = ỹ for almost all x, t

}
= 1.

Arguing as in [8] (Theorem 3, Chap. 3, pp. 113–115)
and taking in account the relations (21)–(35), (40),
(41) and (44), we obtain by passage to the limit in
(42) and (43) as k → 0 that ȳ = y(T ), and for almost
all (x, t, ω) ∈ QT × Ω

|y(t)|α−2 y(t) +
∫ t

0

f ds+
∫ t

0

|y|2µ−2 y ds(45)

=
∫ t

0

h (yk) dW + |y0|α−2
y0.

Finally we show that

f(x, t, ω) = A(y), for almost all (x, t, ω) ∈ QT × Ω.
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