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Abstract:

Let G be a finite group acting on a ring R. To know the twisted Tate cohomol-

ogy H°(G, RT)., parametrized by v = [¢] € H'(G, R¥) is a basic theme inspired by Poincaré. We
shall consider this when G is the Galois group of a Galois extension K/k of number fields and R

is the ring of integers of K.
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1. Introduction. This is a continuation of
[1,2]. We shall determine, for any finite Galois exten-
sion K /k of number fields, the index i, (K/k) where
v =l € HY(Gal(K/k), OF). It is crucial to look at
the prime decomposition of principal ideal generated
by a special value of Poincaré sum related to the co-
cycle c¢. This clarifies a mysterious looking criterion
for parity of indices for real quadratic fields. (See
[3]) As for basic facts on number theory, see [4].

2. The map p.. Let R be a ring with unit
1g, G a finite group acting on R (as ring automor-
phisms) and R* the group of units of R. We denote
the action by x — °z, x € R, s € G. Since G acts
on R* (as group automorphisms) the 1-st cocycle set
ZY(G, R*) makes sense:

(1) Z'(G,R¥)

={c: G — R*, c(st) = c(s) °c(t), s,t € G}.

We consider a map p. : R — R, for c € Z(G, RX):

(2) pe(z) = Z c(s) °z, x€R.

seG

Clearly the map is additive. A basic observation is
the following criterion so that p.(a) € R* for some
a € R.

Theorem 1 (Hilbert). Assume that |G|1r €
R*. For a cocycle c € Z'(G, R*), we have

¢~ 1 (cis a coboundary)

& pe(a) € R* for some a € R.
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When that is so, we have

e(s) = pela) *pela) "

Proof. Suppose first that
(3) pe(a) = Zc(t) ‘a € R*.
¢

Apply s on both sides of (3) and then multiply c¢(s)
on the results. Then, in view of (1), we have

e(8) *pe(a) = Z c(s) *c(t) a= Z c(st) Sa=rp.(a).

As p.(a) € R*, we obtain ¢ ~ 1. Conversely, assume
that c ~ 1. So ¢(s) = a *a™!, a € R*. Put z = «
in (2). Then we find

pc(a) = ZC(S) Sar = OZ|G|1R c R*.

S

L]
Corollary 1 (Hilbert Theorem 90). If K/k
is a finite Galois extension of fields, then

HY(Gal(K/k),K*) = 1.

Proof. By the linear independence of charac-
ters, for any cocycle ¢ € Z1(Gal(K/k), K*), we have
pe(0) = 3 secai(r/k) €(8) 70 # 0 for some § € K and
the assertion follows from Theorem 1. L]

3. The module M,./P,.. Notation being as
in 1, for a cocycle ¢ € Z(G, R*), we set

(4) M.={x€R, c(s) °v=uw, forall se G},
(5) P. = {p.(z), forall =€ R}.

(4), (5) imply the relation

(6) pe(a) =|Gla, when a € M,
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and we find
(7) |GIM. C P. € M..

The structure of the module M./P. depends
only on the cohomology class v = [¢] in H'(G, R*).
As for details of idetification of the quotient module
M./ P. with the (modified) Tate group H°(G, Rt).,,
see [1].

4. Galois extensions K/k. In what fol-
lows, we denote by k either a global or a local field
(of characteristic 0). As such, k is either a finite ex-
tension of Q or Q,. We denote by O the ring of
integers of k.

Let K/k be a finite Galois extension with the
Galois group G = Gal(K/k). Then G acts on the
ring Ok of integers of K and hence on the group
Oj. For a cocycle ¢ € Z'(G,05) we shall look at
modules M., P. defined by (4), (5) with R = Ok.
First, viewing c as a cocycle in Z1(G, K*), we have,
by Corollary 1, ¢(s) = £~ ¢ where £ may be chosen
from Og. Then we find that M, = Ox NE 1O

In other words, we have
(8) &M =(O0xk N0 = (£0k)°, €€ Ok.
Second, as pe(z) =&Y o °¢ *x, we have

(9) Epe(r) = Tryi(8).

From (8), (9) we obtain

(10) Me/Pe = (£0x) [ Tie/i(60x) = H(G, BY),,
c(s) =€ %€

5. Ambiguous ideals. Notation being as in
3, an ideal 2 in Ok will be called ambiguous if *U =
A, s € G. Let p be a prime ideal in Of. The prime
decomposition of p in K is of the form

pznmemz(nm)e”.

Blp Blp

(11)

Let us put
p* =] %
Plp
Note that (11) becomes
(12) p=pher.

It is easy to see that

(13) A C Ok is ambiguous < A = Hp#mp.
p
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For a real number x, put [2] = the smallest integer
> x. Hence when = ¢ Z, [x] = [z] + 1.

Proposition 1. Let 2 =[], p#™e be an am-
biguous ideal. Then we have

e

A =An0, =o' ™
p

Proof. Let my =qep, +7, 0 <r < e, —1. We
have

p#mp — p#qep p#r — pqp#r = p[?—;]p#T

Then our assertion follows since

W7 O = 1 when r =0,
p when r > 0.

]

6. Differents. For a Galois extension K/k

of number fields or local fields, denote by Dy, the

different of the extension. It is an ambiguous integral
ideal in K. So it can be expressed as

(14) DK/k :Hp#tp.
p

Proposition 2. Let A =

integral ambiguous ideal in K.
[=55]
[I,pt =
Proof. Let p be a prime ideal in k£ and h be an
integer > 0. By the definition of D, we get the

following chains of logical equivalences:

pr#mp be an
Then Tg;p2 =

P Ty & p" | ADgeyp & (pF)" | ADg
& (pF)h | () et
t
Seph<my+t, & h< [Lp+ p}.
Cp
L]
Back to the situation in 3, since £ € Ok and
c(s) € O, A = €Ok is an integral ambiguous
ideal, and hence we obtain, from (10), Proposition 1,
Proposition 2, the following
Proposition 3.

mp“p]_’—mp-l

(MC:PC):Hpr[ v IR
where Np = (O : p).
7. Localization. From now on, let K/k be
a Galois extension of number fields and G =
Gal(K/k). Let P, p be prime ideals of K, k, re-
spectively such that 98 | p. Denote by Ky, k, the
completions of K, k, respectively. Then Kg/k, is
also a Galois extension whose Galois group G may
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be identified as the decomposition group at P in G.
Clearly, O, O are embedded in Ok, O, , respec-
tively and similarly for groups of units. Therefore,
any cocycle ¢ € ZY(G, OF) induces naturally a co-
cycle e € ZY (G, O[Xﬁg). Thus, we are ready to use
Proposition 3 to find (M. : P.), (Mcy, : Pey). If £ is
a solution to the cocycle ¢ for G (see (10)), then & is
one to the cocycle cgp for Gg. Put

(15) A=¢0k = [[p#m
p

and define

(16) Ayp = {0k, -

Since

my = vgp(A) = vp (Ag)

the exponent m, for 2y is consistent with double
purposes, global and local. Next, since, by (14), we

have
Dy = Hp#tp = Hsptm = HDKQ,,/J%.
p B B

Now, applying Proposition 3 to a local field &k, we
have
Proposition 4.

STRTRNET

v Poy) = Npl™5 ;
Note also that as e, = 1, t;, = 0 for almost all
p, the indices (M., : Pe,) = 1 for almost all B.
Summarizing all these, we obtain
Theorem 2. Let K/k be a finite Galois ex-
tension of number fields and G = Gal(K/k). For a
cocycle ¢ € ZY(G,05) denote by g the cocycle in-
duced from c by localization at B. Then we have the
product relation (M. : Pe) = [[,(Mey, © Pey,) where
for each p we choose one P dividing p.
From the ramification theory of Galois exten-
sions we have

tp >e,—1, forall p
tp > 1< e, >2 (Dedekind).
Needless to say, if e, = 1 then p is unramified, if

tp = ep —1 > 1 then p is said to be tamely ramified.
Furthermore, if p is such that ¢, > e, > 2 then p is
wildly ramified. (Note that p is wildly ramified <
p | ep, where p means the characteristic of the finite
field Oy /p.)

We will use these terms for extensions in an ob-
vious way. Proposition 4 implies immediately the
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following

Theorem 3. Let K/k be a finite Galois ex-
tension of number fields. If K/k is unramified or
tamely ramified, then M, = P. for all cocycle ¢ €
ZY(Gal(K/k),O0F).

8. Canonical class for local fields. Let
K/k be a Galois extension of number fields or lo-
cal fields. In view of the remark at the end of 3, we

have a right to write
(17) iy (K/k)=(M.: P.), ~¢€ HY(G,0%).

Then we can express Theorem 2 as
Theorem 4. For a finite Galois exten-
sion K/k of number fields, we have i,(K/k)

= [, iy (K /Fep).-
Now passing to localization, choose a prime ele-
ment II € Kg. Then the relation
Il = sta s € G‘]37 zs € Ofx{sp’
defines the cohomology class

(18) iy = 2] € HYG,OF).

We know that the group H'(G,Ox, ) is cyclic of
order e, generated by Vg, k,- (See [2]) Therefore
for any class v = [c] € H(G, OIX(m ), & unique integer
m mod ey, is determined so that

(19) Y= (Vg k)"

In otherwords,
(20) cr 2™
Now, let £ be a solution in K to the cocycle ¢ in (10).
Then (20) means that
Sf o sHms
= =u
§ I

X

u, Uu€ (’)Ks13
or

ull™ = Eon”
where v € O,jp and 7 being a prime element in k.
In view of (15), we find

m=myp +rep
and so
(21) m = my mod ey.

9. Quadratic fields. Now that we have a
product relation (Theorem 4), our problem of indices
for global fields is entirely reduced to local computa-
tions. As the easiest example, let us look at our old
works again. (See [1, 3])
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Let K = Q(vd) where d is a square free in-
teger. Let p, P be primes of Q, K, respectively,
such that P | p. When extensions Ky/Q, is un-
ramified or tamely ramified, then by Proposition 4,
ing (Kp/Qp) = 1. Therefore only wildly ramified
case must be taken care of. This is precisely the case
where

p=2 =2, 3mod4.

(i) p = 2, d = 2mod4. In this case,
DKm/Q2 = P2 and so t3 = 3. Since the order of the
cohomology group Hl(G,OIXGn) = (vp(Kgp/Q2)) is
ez = 2, we find that the number m, in (19), is eather
0 or 1. As we are allowed to replace mo by m mod es,
we get, using Proposition 4,

i1(Kp/Qo) = ol#] Z o3l Z 9
and, for v # 1,

[Vol. 81(A),

So the index i, = 2 always.

(ii) p =2, d =3 mod4. In this case we have
to = 2. The similar calculation as above shows this
time that

. 2 when v =1, i.e. when my is even,
1 =
K 1 when v # 1, i.e. when my is odd.
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