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Zeta functions for formal weight enumerators and the extremal property
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Abstract: In 1999, Iwan Duursma defined the zeta function for a linear code as a gen-
erating function of its Hamming weight enumerator. It has various properties similar to those
of the zeta function of an algebraic curve. This article extends Duursma’s theory to the case of
formal weight enumerators. It is shown that the zeta function for a formal weight enumerator has
a similar structure to that of the weight enumerator of a Type II code. The notion of the extremal
formal weight enumerators is introduced and an analogue of the Mallows-Sloane bound is obtained.
Moreover the ternary case is considered.
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1. Introduction. Let p be a prime, q = pr

for some positive integer r and we denote the finite
field with q elements by Fq. Let C be an [n, k, d]-
code over Fq with the Hamming weight enumera-
tor WC(x, y). In 1999, Duursma [4] defined the zeta
function for a linear code as follows:

Definition 1.1 (Duursma). For any linear
code C, there exists a unique polynomial P (T ) ∈
Q[T ] of degree at most n− d such that

P (T )
(1− T )(1− qT )

(y(1− T ) + xT )n

= · · ·+ WC(x, y)− xn

q − 1
Tn−d + · · · .

We call P (T ) the zeta polynomial of the code C, and
Z(T ) = P (T )/((1 − T )(1 − qT )) the zeta function
of C.

For a proof of existence and uniqueness of P (T ),
the reader is referred to [1] or [2]. In his subsequent
papers [5–7], Duursma deduces various interesting
properties of P (T ) and discusses their possible appli-
cations to the coding theory. Among them, the func-
tional equation and an analogue of the Riemann hy-
pothesis for self-dual codes attract interests of many
mathematicians, both in coding theory and number
theory. When C is self-dual, the MacWilliams iden-
tity leads the functional equation of P (T ) of the form

(1) P (T ) = P

(
1
qT

)
qgT 2g
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(g = n + 1 − k − d, see [5, p. 59]). It is the same
formula as the functional equation of the zeta func-
tion of an algebraic curve (see Stichtenoth [14, Chap-
ter V] for example), so we can formulate an analogue
of the Riemann hypothesis as follows (see Duursma
[6, Definition 4.1]):

Definition 1.2. The code C satisfies the Rie-
mann hypothesis if all the zeros of P (T ) have the
same absolute value 1/

√
q.

One of the striking differences between the zeta
functions of self-dual codes and those of algebraic
curves is that the Riemann hypothesis for self-dual
codes often fails to hold (in the case of the algebraic
curves, the Riemann hypothesis is always true, as
was proved by A. Weil). Finding an equivalent con-
dition for a self-dual code to satisfy the Riemann
hypothesis is still an open problem, but Duursma
proposes the following (see [6, Open Problem 4.2])

Problem 1.3. Prove or disprove that all ex-
tremal weight enumerators satisfy the Riemann hy-
pothesis.

A self-dual code C is called extremal if it has
the largest possible minimum distance (see Pless [12,
p. 139]). There are 4 well-known sequences of ex-
tremal self-dual codes (Types I, II, III and IV, see
Conway-Sloane [3]). Duursma [7] proves that all ex-
tremal Type IV codes satisfy the Riemann hypothe-
sis.

This article attempts to extend Duursma’s the-
ory to other classes of homogeneous polynomi-
als than the weight enumerators of existing codes.
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Studying carefully the proof of existence of P (T ),
we notice that WC(x, y) in Definition 1.1 need not
be a weight enumerator of an existing code: more
essential point is that WC(x, y) is a homogeneous
polynomial of the form

xn +
n∑

i=d

Aix
n−iyi

(Ai ∈ C, 1 ≤ d ≤ n, Ad 6= 0)

(2)

(see [1, p.93]). In fact, for any polynomial W (x, y)
of the form (2), we can similarly verify existence and
uniqueness of P (T ) ∈ C[T ] such that

P (T )
(1− T )(1− qT )

(y(1− T ) + xT )n

= · · ·+ W (x, y)− xn

q − 1
Tn−d + · · ·

(the number q should be determined suitably ac-
cording to what meaning W (x, y) has). As a class
of homogeneous polynomials, we consider so-called
“formal weight enumerators”:

Definition 1.4. We call W (x, y) =∑n
i=0Aix

n−iyi ∈ C[x, y] a formal weight enu-
merator if the following conditions are satisfied:
(i) Ai 6= 0 ⇒ 4|i.
(ii) W ((x+ y)/

√
2, (x− y)/

√
2) = −W (x, y).

The notion of formal weight enumerators was
first introduced by Ozeki [10] in which he deduced
a remarkable result in the theory of modular forms,
the construction of the Eisenstein series E6(z) us-
ing an example of formal weight enumerators and
the Broué-Enguehard map. The formal weight enu-
merator W (x, y) resembles the weight enumerators
of Type II codes, but is distinguished from them by
the condition (ii) of Definition 1.4 (if W (x, y) is a
weight enumerator of a Type II code, we haveW ((x+
y)/

√
2, (x− y)/

√
2) = W (x, y)).

In this article, we establish the functional equa-
tion of the zeta polynomial of formal weight enu-
merators and formulate an analogue of the Riemann
hypothesis. Moreover, we obtain a certain inequality
similar to the Mallows-Sloane bound, which charac-
terizes the extremal formal weight enumerators. In
the last section, similar results for ternary formal
weight enumerators are given.

The results in this article suggest that we should
not restrict ourselves to existing linear codes when
we consider “zeta functions for linear codes,” and
that we should take into consideration various other

classes of invariant polynomials such as formal weight
enumerators.

For part of the results in this paper, see also [2].
2. Zeta functions and an analogue of the

Riemann hypothesis for formal weight enu-
merators. LetW (x, y) be a formal weight enumer-
ator and we write it in the form (2). We consider
W (x, y) a weight enumerator of a virtual binary self-
dual code, so we set q = 2. Then we can determine
its zeta polynomial P (T ). The first result is the func-
tional equation of P (T ):

Theorem 2.1. The zeta polynomial P (T ) of
W (x, y) is of degree 2g (g = (n/2) + 1− d) and sat-
isfies

(3) P (T ) = −P
(

1
2T

)
2gT 2g.

Proof . The proof is similar to that of [5, p. 59]
(note Definition 1.4 (ii)).

The set of all weight enumerators of Type II
codes and all formal weight enumerators forms the
invariant polynomial ring C[x, y]G8 where

G8 :=
〈

1− i

2

(
1 −1
1 1

)
,

(
−i 0
0 1

)〉
(the group G8 is defined in Shephard-Todd [13]).
More precisely, it is known that the ring C[x, y]G8

is generated by the following two polynomials:

W8(x, y) = x8 + 14x4y4 + y8,

W12(x, y) = x12 − 33x8y4 − 33x4y8 + y12.

The polynomial W8(x, y) is the weight enumerator of
the extended Hamming code, a well-known example
of Type II codes, and W12(x, y) satisfies the condi-
tion (ii) of Definition 1.4. So it follows that we found
two different functional equations for the members of
C[x, y]G8 :

P (T ) = P

(
1

2T

)
2gT 2g (Type II codes),

P (T ) = −P
(

1
2T

)
2gT 2g

(
formal weight
enumerators

)
.

From Theorem 2.1, we can deduce that 2g roots
of P (T ) are, after suitable rearrangement of them,
α1, 1/2α1, . . . , αs, 1/2αs for some s (αj 6= ±1/

√
2),

1/
√

2 and −1/
√

2, both occur in odd multiplicity
(the proof is similar to that of [14, p. 167]). So we can
formulate an analogue of the Riemann hypothesis for
P (T ) (or W (x, y)) in a similar way to the case of the
original Duursma theory:
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Definition 2.2. A formal weight enumerator
W (x, y) satisfies the Riemann hypothesis if all the
zeros of P (T ) have the same absolute value 1/

√
2.

Remark. In the cases of the zeta polynomials
for algebraic curves or existing self-dual codes (over
Fq), the multiplicities of ±1/

√
q are even. It is one of

the different points of them from the formal weight
enumerators.

In the next section, we observe closely the Rie-
mann hypothesis and the extremal property of for-
mal weight enumerators.

3. Extremal formal weight enumerators.
We write formal weight enumerators in the form (2).

Definition 3.1. We call a formal weight enu-
merator W (x, y) (degW = n) “extremal” if d is the
largest among all formal weight enumerators of de-
gree n.

From the discussion of the ring C[x, y]G8 in the
previous section, we can see that the general forms
of formal weight enumerators are

(4) W8(x, y)lW12(x, y)2m+1 (l,m ≥ 0)

and their suitable linear combinations (we can
see formal weight enumerators W (x, y) satisfy
degW ≡ 4 (mod 8)): When degW ≤ 28, W12(x, y),
W8(x, y)W12(x, y) and W8(x, y)2W12(x, y) are them-
selves extremal, but when degW ≥ 36, there always
exist at least two different formal weight enumera-
tors, so we can eliminate the terms with small powers
in y:

Example 3.2. degW = 36. There are two
formal weight enumerators of the form (4):

W8(x,y)3W12(x,y) = x36 + 9x32y4 − 828x28y8 − ··· ,
W12(x,y)3 = x36 − 99x32y4 + 3168x28y8 − ··· .

In this case,

11
12
W8(x, y)3W12(x, y) +

1
12
W12(x, y)3

= x36 − 495x28y8 − 19005x24y12 − · · ·
(5)

is extremal. All extremal formal weight enumerators
can be constructed in this way (see also [8, Chap-
ter 19]).

We give the zeta polynomials P12(T ),
P20(T ), P28(T ) and P36(T ) for W12(x, y),
W8(x, y)W12(x, y)W8(x, y)2W12(x, y) and the poly-

nomial (5) respectively (all these are extremal):

P12(T ) =
1
15

(2T 2 − 1)(2T 2 + 1)(2T 2 + 2T + 1),

P20(T ) =
1

255
(2T 2 − 1)(2T 2 + 2T + 1)

· (2T 2 + 1)(16T 8 + 1),

P28(T ) =
1

4095
(2T 2 − 1)(2T 2 + 2T + 1)(2T 2 + 1)

· (4T 4 − 2T 2 + 1)(4T 4 + 2T 2 + 1)

· (4T 4 + 4T 3 + 2T 2 + 2T + 1)

· (4T 4 − 4T 3 + 2T 2 − 2T + 1),

P36(T ) =
1

11920740
(
2T 2 − 1

)
(199680T 20

+ 599040T 19 + 1098240T 18 + 1497600T 17

+ 1683904T 16 + 1630400T 15

+ 1410176T 14 + 1116384T 13 + 832384T 12

+ 598544T 11 + 424720T 10 + 299272T 9

+ 208096T 8 + 139548T 7 + 88136T 6

+ 50950T 5 + 26311T 4 + 11700T 3

+ 4290T 2 + 1170T + 195)

(we omit the zeta polynomials for others).
There seems to be a structure of the zeta func-

tions for formal weight enumerators quite similar to
that of the zeta functions for Type II codes. In fact,
some computer experiments imply that extremal for-
mal weight enumerators satisfy the Riemann hypoth-
esis, so we may ask the following question:

Problem 3.3. Prove or disprove that all ex-
tremal formal weight enumerators satisfy the Rie-
mann hypothesis.

For these observations, we proceed to investigate
the extremal property of formal weight enumerators
more closely. To be precise, we obtain the best possi-
ble bound for d of formal weight enumerators of the
form (2):

Theorem 3.4. For any formal weight enu-
merator W (x, y) of the form (2), we have

d ≤ 4
[
n− 12

24

]
+ 4.

The equality holds when W (x, y) is extremal.
For Type II codes, the best possible bound for

the minimum distance d of extremal codes is known
(see also MacWilliams-Sloane [8, pp. 624–628]):

Theorem 3.5 (Mallows-Sloane [9]). For any
Type II code of length n and minimum distance d,

d ≤ 4
[ n
24

]
+ 4.

The equality holds in the above theorem for an
extremal Type II code. We can see from the discus-
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sion of Duursma [7] that Theorem 3.5 is also valid
for formal weight enumerators, but it is not the best
possible. Theorem 3.4 improves Theorem 3.5 for the
case of formal weight enumerators.

Proof of Theorem 3.4. Our proof is based
on the technique developed in [7, §2]. First we intro-
duce some notations and a lemma from [7].

For a linear transformation σ =
(

a b
c d

)
we define

the relation between two pairs of variables (x, y) and
(u, v) as follows in accordance with [7, §2]:

(6) (u, v) = (x, y)σ = (ax+ cy, bx+ dy).

We introduce the matching transformation of differ-
ential operators(

∂

∂x
,
∂

∂y

)
=
(
∂

∂u
,
∂

∂v

)
σT

=
(
a
∂

∂u
+ b

∂

∂v
, c
∂

∂u
+ d

∂

∂v

)
,

where σT means the transposed matrix of σ.
Let a(x, y), p(x, y) and A(x, y) be arbitrary ho-

mogeneous polynomials over C. We denote the
differential operator p(∂/∂x, ∂/∂y) by p(x, y)(D).
Then we have

Lemma 3.6.

p((u, v)σT)(D)A(u, v) = p(x, y)(D)A((x, y)σ).

Proof . This is Lemma 1 of Duursma [7].
The basic idea is that we would like to find a

relation of the form

(7) a(x, y)|p(x, y)(D)A(x, y)

between a (formal) weight enumerator A(x, y) and
some polynomials a(x, y), p(x, y). Then we can say
deg a is less than or equal to the degree of the right
hand side. The degrees of the terms in (7) contain
parameters such as the code length n and the min-
imum distance d. If we can find good a(x, y) and
p(x, y), then the inequality of the degrees becomes
straightforwardly a bound of d in terms of n. By
this method, Duursma obtains an alternative proof
of the Mallows-Sloane bounds for Types I through
IV (see Theorem 3 and §1.1 of [7]). We apply this
method to formal weight enumerators.

Let W (x, y) be a formal weight enumerator of
degree n. The number d is the same as in (2). Then
we have the following two propositions:

Proposition 3.7. If d ≥ 8,

(xy)d−5(x4 − y4)d−5|xy(x4 − y4)(D)W (x, y).

Proof . It can be shown similarly to [7,
Lemma 2].

Proposition 3.8. If d ≥ 8,

(x4 + y4)(x4 + 6x2y2 + y4)|xy(x4 − y4)(D)W (x, y).

Proof . By definition, W (x, y) can be written in
the form

W (x,y) =xn + yn(8)

+
(n−4)/8∑
j=d/4

A4j

(
xn−4jy4j + x4jyn−4j

)
(note that W (y, x) = W (x, y) since W (x, y) is invari-
ant under G8). Using this expression, we can easily
verify

(x4 + y4)|xy(x4 − y4)(D)W (x, y).

Next we apply Lemma 3.6 with A(x, y) = W (x, y),
σ =

(
1 1
1 −1

)
and p(x, y) = xy(x4 − y4). By Defini-

tion 1.4 (ii), we have

p(x, y)(D)W ((x, y)σ) = p(x, y)(D)W (x+ y, x− y)

= −(
√

2)np(x, y)(D)W (x, y).

Since (x4 + y4)|p(x, y)(D)W (x, y), we have

(u4 + 6u2v2 + v4)|p((u, v)σT)(D)W (u, v),

where (u4 + 6u2v2 + v4)/8 is the image of x4 + y4 by
the transformation σ. On the other hand, we have

p((u, v)σT) = p(u+ v, u− v) = 8p(u, v).

Therefore

(x4 + 6x2y2 + y4)|xy(x4 − y4)(D)W (x, y).

Thus we get the desired result.
Propositions 3.7 and 3.8 bring the following
Theorem 3.9. For any formal weight enu-

merator W (x, y) with d ≥ 8, we have

(xy)d−5(x4−y4)d−5

·(x4 +y4)(x4 +6x2y2 +y4)|xy(x4−y4)(D)W (x, y).

Theorem 3.4 is deduced from the above theorem.
Comparing the degrees in both sides of Theorem 3.9,
we obtain d ≤ 4[(n− 8)/24] + 4. Since n = degW ≡
4 (mod 8), we see [(n − 8)/24] = [(n − 12)/24] and
get the inequality in Theorem 3.4. If W (x, y) is ex-
tremal, equality holds in Theorem 3.4. This can be
shown similarly to the case of Type II codes (see [8,
p. 624] for example).
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4. The ternary case. The same machin-
ery exists in the case of the weight enumerators for
ternary codes. In this section, we describe briefly
some properties of ternary formal weight enumera-
tors.

It is known that the Hamming weight enumer-
ators of ternary self-dual codes belong to C[x, y]G

where

G :=
〈
σ1 =

1√
3

(
1 2
1 −1

)
, σ2 =

(
1 0
0 e2πi/3

)〉
.

The ring C[x, y]G is generated by w4(x, y) = x4 +
8xy3 and w12(x, y) = x12 + 264x6y6 + 440x3y9 +
24y12, the weight enumerators of the self-dual code
of length 4 and the ternary Golay code, respectively
([12, p. 137]). If we take H := 〈σ1σ2σ1, σ2〉, the
subgroup of G of index 2 ([11, p. 92]), then using the
generators w4(x, y) and w6(x, y) = x6−20x3y3−8y6

of C[x, y]H , we can construct ternary formal weight
enumerators. Since w6((x + 2y)/

√
3, (x − y)/

√
3) =

−w6(x, y), they are of the forms

w4(x, y)lw6(x, y)2m+1 (l,m ≥ 0)

and their suitable linear combinations. For the zeta
polynomial P (T ) of a ternary formal weight enumer-
ator w(x, y) of the form (2), we have the functional
equation

P (T ) = −P
(

1
3T

)
3gT 2g

(
g =

n

2
+ 1− d

)
and similarly as in Section 2, we can formulate the
Riemann hypothesis as follows:

Definition 4.1. A ternary formal weight enu-
merator w(x, y) satisfies the Riemann hypothesis if
all the zeros of P (T ) have the same absolute value
1/
√

3.
Also in this case, we find a strong resemblance

between zeta functions for formal weight enumera-
tors and those for existing codes. In fact, we can
observe from computer experiments that extremal
ternary formal weight enumerators satisfy the Rie-
mann hypothesis.

Here are zeta polynomials P6(T ), P10(T ),
P14(T ) and P18(T ) for extremal ternary for-
mal weight enumerators w6(x, y), w4(x, y)w6(x, y),
w4(x, y)2w6(x, y) and (1/16){15w4(x, y)3w6(x, y) +
w6(x, y)3} (extremal of degree 18), respectively:

P6(T ) =
1
2
(3T 2 − 1),

P10(T ) =
1
20

(3T 2 − 1)(9T 4 + 1),

P14(T ) =
1

182
(3T 2 − 1)(3T 2 − 3T + 1)

· (3T 2 + 3T + 1)(9T 4 + 3T 2 + 1),

P18(T ) =
1

182
(3T 2 − 1)(3T 2 + 3T + 1)

· (9T 4 + 3T 2 + 1)

(we omit the zeta polynomials for others).

We may ask a question of whether extremal
ternary formal weight enumerators satisfy the Rie-
mann hypothesis.
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