A note on the nonrelativistic limit of Dirac operators and spectral concentration

By Hiroshi T. Ito*) and Osanobu Yamada**)
(Communicated by Heisuke Hironaka, m. J. a., Dec. 12, 2005)

Abstract

We study the nonrelativistic limit of Dirac operators from the viewpoint of the spectral relationship between Dirac operators and Pauli operators. We show that Dirac operators have spectral concentration about eigenvalues of Pauli operators for a large class of magnetic fields and electric potentials diverging at infinity.

Key words: Dirac operators; nonrelativistic limit; Pauli operators; spectral concentration.

1. Introduction. We consider the Dirac operator

$$
\begin{gathered}
H_{c}:=c \sum_{j=1}^{3} \alpha_{j} D_{j}+m c^{2} \beta+V(x) \\
D_{j}=-i \frac{\partial}{\partial x_{j}}-b_{j}(x)
\end{gathered}
$$

in the Hilbert space $\mathcal{H}:=\mathbf{h}^{4}$ with $\mathbf{h}=L^{2}\left(\mathbf{R}^{3}\right)$, where $c>0$ is the velocity of light, $m>0$ the rest mass of the particle and

$$
\alpha_{j}:=\left(\begin{array}{cc}
\mathbf{0} & \sigma_{j} \\
\sigma_{j} & \mathbf{0}
\end{array}\right), \quad \beta:=\left(\begin{array}{cc}
I_{2} & \mathbf{0} \\
\mathbf{0} & -I_{2}
\end{array}\right)
$$

with the 2×2 identity matrix I_{2} and Pauli matrices

$$
\begin{aligned}
\sigma_{1} & :=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad \sigma_{2}:=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \\
\sigma_{3} & :=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
\end{aligned}
$$

Here we keep the anti-commutation relation

$$
\begin{equation*}
\alpha_{j} \alpha_{k}+\alpha_{k} \alpha_{j}=2 \delta_{j k} I_{4}, \quad \beta \alpha_{j}=-\alpha_{j} \beta \tag{1}
\end{equation*}
$$

in mind. Each $b_{j}(x)$ is assumed to be a real-valued smooth function, and $V(x)$ is a 4×4 Hermitian matrix-valued function. Throughout this note we assume that each component of $V(x)$ is continuous in \mathbf{R}^{3}, although some singularities may be allowed. Then H_{c} on $C_{0}^{\infty}\left(\mathbf{R}^{3}\right)^{4}$ is essentially self-adjoint in \mathcal{H}. We denote its unique self-adjoint extension by

[^0]H_{c} again. In this paper we assume that V has the form
\[

V(x):=\left($$
\begin{array}{cc}
V_{+}(x) & \mathbf{0} \\
\mathbf{0} & V_{-}(x)
\end{array}
$$\right)
\]

with 2×2 Hermitian matrix-valued functions $V_{ \pm}(x)$ and consider the corresponding Pauli operators

$$
\begin{aligned}
S_{ \pm} & := \pm \frac{1}{2 m}(\sigma \cdot D)^{2}+V_{ \pm}(x) \\
& = \pm \frac{1}{2 m} \sum_{j=1}^{3} D_{j}^{2} \mp \frac{1}{2 m}(B(x) \cdot \sigma)+V_{ \pm}(x)
\end{aligned}
$$

acting on $\mathbf{h}^{2}=L^{2}\left(\mathbf{R}^{3}\right)^{2}$, where

$$
\begin{gathered}
\sigma \cdot D:=\sum_{j=1}^{3} \sigma_{j} D_{j}, \quad B(x) \cdot \sigma:=\sum_{j=1}^{3} B_{j}(x) \sigma_{j} \\
\left(B_{1}(x), B_{2}(x), B_{3}(x)\right)=\operatorname{curl}\left(b_{1}(x), b_{2}(x), b_{3}(x)\right)
\end{gathered}
$$

The nonrelativistic limit of Dirac operators has been intensively studied by many authors from various points of view and it has been shown that the dynamics $e^{-i t H_{c}}$, the resolvent $\left(H_{c}-z\right)^{-1}$ and the scattering operator for H_{c} converge as $c \rightarrow \infty$ to the corresponding objects for the corresponding Schrödinger operators (see, e.g., Cirincione-Chernoff [3], Hunziker [6], Yajima [17], respectively). In this paper we study the relation between the spectra of H_{c} and

$$
S:=\left(\begin{array}{cc}
S_{+} & \mathbf{0} \\
\mathbf{0} & S_{-}
\end{array}\right)
$$

another important object.
We consider a simple case of scalar potentials $V(x)=v(x) I_{4}$, that is, $V_{ \pm}(x)=v(x) I_{2}$ and $b_{j}(x) \equiv$ $0(1 \leq j \leq 3)$. If $v(x) \in C^{0}\left(\mathbf{R}^{3}\right)$ satisfies

$$
\begin{equation*}
v(x) \rightarrow+\infty \quad(|x| \rightarrow \infty) \tag{2}
\end{equation*}
$$

it is well known that $S_{+}=-(1 / 2 m) \Delta+v(x)$ on $C_{0}^{\infty}\left(\mathbf{R}^{3}\right)^{2}$ is essentially self-adjoint. The spectrum of S_{+}is purely discrete, that is, the spectrum $\sigma\left(S_{+}\right)$ consists of eigenvalues

$$
\lambda_{1}<\lambda_{2}<\cdots \lambda_{n}<\cdots \rightarrow+\infty \quad(n \rightarrow \infty)
$$

with finite multiplicity (Reed-Simon [11, Theorem XIII.67]). On the other hand, $\sigma\left(H_{c}\right)$ is purely (absolutely) continuous and covers the whole real line (cf. Kalf-Ōkaji-Yamada [9], Schmidt-Yamada [12]).

There are several works which explain how these spectra of different natures of H_{c} and S_{+}are related. Titchmarsh [14], Grigore-Nenciu-Purice [4] and Amour-Brummelhuis-Nourrigat [2] explain this by proving that resonances of H_{c} converge as $c \rightarrow \infty$ to isolated eigenvalues of corresponding Schrödinger operators and Veselić [16] does this in terms of spectral concentration. In this paper we generalize Veselić's [16] result to the case that electric fields V are in more general class and that magnetic fields are present.
2. The nonrelativistic limit. In this section we give a theorem concerning the nonrelativistic limit of H_{c}. We introduce some notations. Let $E_{c}(\lambda)$ and $E_{ \pm}(\lambda)$ be the right-continuous spectral families of self-adjoint operators H_{c} and $S Q_{ \pm}$, respectively, where $Q_{ \pm}:=(I \pm \beta) / 2$, that is,

$$
\begin{aligned}
& H_{c}=\int_{-\infty}^{+\infty} \lambda d E_{c}(\lambda), \quad S Q_{ \pm}=\int_{-\infty}^{+\infty} \lambda d E_{ \pm}(\lambda) \\
& S Q_{+}=\left(\begin{array}{cc}
S_{+} & \mathbf{0} \\
\mathbf{0} & \mathbf{0}
\end{array}\right), \quad S Q_{-}=\left(\begin{array}{cc}
\mathbf{0} & \mathbf{0} \\
\mathbf{0} & S_{-}
\end{array}\right)
\end{aligned}
$$

Theorem 2.1. Assume that $V_{ \pm}(x) \in C^{0}$ and $b_{j}(x) \in C^{3}$ on \mathbf{R}^{3}. Suppose
(i) $S_{+}\left(\right.$or $\left.S_{-}\right)$on $C_{0}^{\infty}\left(\mathbf{R}^{3}\right)^{2}$ is essentially selfadjoint in \mathbf{h}^{2},
(ii) λ is an isolated eigenvalue of $S_{+}\left(\right.$or $\left.S_{-}\right)$with f_{-} nite multiplicity in some interval $I=(a, b)$ such that
$(a, b) \cap \sigma\left(S_{+}\right)=\{\lambda\} \quad\left(\right.$ or $\left.(a, b) \cap \sigma\left(S_{-}\right)=\{\lambda\}\right)$, where $\sigma\left(S_{ \pm}\right)$is the spectrum of $S_{ \pm}$. Moreover, neither a nor b is an eigenvalue of S_{+}(or $\left.S_{-}\right)$,
(iii) every eigenfunction u of S_{+}(or S_{-}) corresponding to λ satisfies $(\sigma \cdot D) u \in \mathbf{h}^{2}$ and

$$
V_{-}(\sigma \cdot D) u \in \mathbf{h}^{2} \quad\left(\text { or } V_{+}(\sigma \cdot D) u \in \mathbf{h}^{2}\right)
$$

where $\sigma \cdot D:=\sum_{j=1}^{3} \sigma_{j} D_{j}$.

Let

$$
\begin{aligned}
J_{c}^{ \pm} & :=\left[\lambda \pm m c^{2}-\frac{1}{c^{\tau}}, \lambda \pm m c^{2}+\frac{1}{c^{\tau}}\right], \\
I_{c}^{ \pm} & :=\left[a \pm m c^{2}, b \pm m c^{2}\right],
\end{aligned}
$$

for $0<\tau<1$. Then we have

$$
\begin{gathered}
E_{c}\left(I_{c}^{+} \backslash J_{c}^{+}\right) Q_{+} \Phi \rightarrow 0, \\
E_{c}\left(J_{c}^{+}\right) Q_{+} \Phi \rightarrow E_{+}(\{\lambda\}) Q_{+} \Phi \\
\binom{E_{c}\left(I_{c}^{-} \backslash J_{c}^{-}\right) Q_{-} \Phi \rightarrow 0,}{E_{c}\left(J_{c}^{-}\right) Q_{-} \Phi \rightarrow E_{-}(\{\lambda\}) Q_{-} \Phi}
\end{gathered}
$$

strongly in \mathcal{H} as $c \rightarrow \infty$ for any $\Phi \in \mathcal{H}$.
To prove Theorem 2.1 we use a one-parameter unitary group

$$
U_{s}=\exp (-i s K), \quad K:=\frac{i}{2 m} \beta(\alpha \cdot D)
$$

which is the first approximation of Foldy-Wouthuysen-Tani transform. The operator K is self-adjoint in \mathcal{H} such that

$$
C_{0}^{\infty}\left(\mathbf{R}^{3}\right)^{4} \subset D(K) \subset H_{\mathrm{loc}}^{1}\left(\mathbf{R}^{3}\right)^{4}
$$

where $H_{\mathrm{loc}}^{1}\left(\mathbf{R}^{3}\right)^{4}$ is the local Sobolev space.
Let $\Phi \in C_{0}^{\infty}\left(\mathbf{R}^{3}\right)^{4}$. Since $U_{s} \Phi$ is a solution to the symmetric hyperbolic equation with the finite propagation property, the support of $U_{s} \Phi$ is also compact. Therefore we have

$$
\begin{align*}
& U_{s}(\alpha \cdot D) U_{s}^{-1} \Phi=(\alpha \cdot D) U_{-2 s} \Phi \\
& U_{s} \beta U_{s}^{-1} \Phi=\beta U_{-2 s} \Phi \\
& U_{s} H_{c} U_{s}^{-1} \Phi \\
& =\left[\frac{1}{s}(\alpha \cdot D)+\frac{m}{s^{2}} \beta\right] U_{-2 s} \Phi+U_{s} V U_{-s} \Phi \tag{3}
\end{align*}
$$

where $s=1 / c$.
Lemma 2.2. Let $T_{s}:=U_{s} H_{c} U_{s}^{-1}$. For any $\Phi \in C_{0}^{\infty}\left(\mathbf{R}^{3}\right)^{4}$ we have

$$
\begin{aligned}
{\left[T_{s}-\frac{m}{s^{2}} \beta\right] \Phi=} & U_{s} H_{c} U_{s}^{-1} \Phi-\frac{m}{s^{2}} \beta \Phi \\
& \rightarrow\left(\frac{1}{2 m}(\alpha \cdot D)^{2} \beta+V\right) \Phi=S \Phi
\end{aligned}
$$

in \mathcal{H} as $s=1 / c \rightarrow 0$.
We sketch the proof of Lemma 2.2. By Maclaurin expansion and (1) we have
$U_{-2 s} \Phi=\Phi-\frac{s}{m} \beta(\alpha \cdot D) \Phi-\frac{s^{2}}{2 m^{2}}(\alpha \cdot D)^{2} \Phi+O\left(s^{3}\right)$.
as $s \rightarrow 0$. For the first term of (3) we obtain

$$
\left[\frac{1}{s}(\alpha \cdot D)+\frac{m}{s^{2}} \beta\right] U_{-2 s} \Phi
$$

$$
=\frac{1}{2 m}(\alpha \cdot D)^{2} \beta \Phi+\frac{m}{s^{2}} \beta \Phi+O(s) \quad(s \rightarrow 0) .
$$

Since the supports of $U_{-s} \Phi$ for $|s| \leq 1$ are contained in a ball B_{R} as remarked above, we obtain, by noting $U_{-s} \rightarrow I(s \rightarrow 0)$ strongly in \mathcal{H},

$$
\begin{aligned}
& U_{s} V U_{-s} \Phi-V \Phi \\
& =U_{s} V\left(U_{-s}-I\right) \Phi+\left(U_{s}-I\right) V \Phi \rightarrow 0 \quad \text { in } \mathcal{H}
\end{aligned}
$$

which gives Lemma 2.2.

Lemma 2.2 gives the following

Lemma 2.3. Let $I=[\alpha, \beta]$. Suppose that S_{+} (or S_{-}) on $C_{0}^{\infty}\left(\mathbf{R}^{3}\right)^{2}$ is essentially self-adjoint in \mathbf{h}^{2}, and neither α nor β is an eigenvalue of the selfadjoint extension S_{+}. Then we have
(4) $E_{c}\left(\left[\alpha+m c^{2}, \beta+m c^{2}\right]\right) Q_{+} \Phi \rightarrow E_{+}(I) Q_{+} \Phi$

$$
\left(\text { or } E_{c}\left(\left[\alpha-m c^{2}, \beta-m c^{2}\right]\right) Q_{-} \Phi \rightarrow E_{-}(I) Q_{-} \Phi\right)
$$

strongly in \mathcal{H} for every $\Phi \in \mathcal{H}$ as $c \rightarrow \infty$.
We outline the proof. Lemma 2.2 and the essential self-adjointness of S_{+}yield

$$
\left(T_{s}-\frac{m}{s^{2}}-z\right)^{-1} Q_{+} \Phi \rightarrow\left(S Q_{+}-z\right)^{-1} Q_{+} \Phi
$$

strongly in \mathcal{H} as $s=1 / c \rightarrow 0$ for every $\Phi \in \mathcal{H}$ and $\operatorname{Im} z \neq 0$. Let $f(\lambda) \in C_{0}^{\infty}(\mathbf{R})$. Then we obtain by using Helffer-Sjöstrand's formula (see Helffer-Sjöstrand [5], Isozaki [8])

$$
f\left(T_{s}-\frac{m}{s^{2}}\right) Q_{+} \Phi \rightarrow f\left(S Q_{+}\right) Q_{+} \Phi
$$

strongly in \mathcal{H}. Since $U_{s} \rightarrow I$ strongly and

$$
f\left(T_{s}-\frac{m}{s^{2}}\right)=U_{s} f\left(H_{c}-m c^{2}\right) U_{-s}
$$

we have

$$
f\left(H_{c}-m c^{2}\right) Q_{+} \Phi \rightarrow f\left(S Q_{+}\right) Q_{+} \Phi \quad(c \rightarrow \infty)
$$

strongly in \mathcal{H}. The lemma follows by applying the well known approximation argument, see e.g. Theorem VIII. 24 in [10].

Let λ be an isolated eigenvalue of S_{+}with multiplicity m and

$$
\psi_{1}, \psi_{2}, \ldots, \psi_{m}
$$

the corresponding orthonormal eigenfunctions of S_{+} in \mathbf{h}^{2}. Put

$$
\begin{aligned}
\Psi_{j}(c) & :=\binom{\psi_{j}}{(1 / 2 m c)(\sigma \cdot D) \psi_{j}} \\
\Psi_{j} & :=\Psi_{j}(\infty)=\binom{\psi_{j}}{\mathbf{0}}
\end{aligned}
$$

Then we have

$$
\begin{aligned}
& \left(H_{c}-m c^{2}\right) \Psi_{j}(c)-\lambda \Psi_{j}(c) \\
= & \left(\begin{array}{cc}
V_{+}-\lambda & c(\sigma \cdot D) \\
c(\sigma \cdot D) V_{-}-\lambda-2 m c^{2}
\end{array}\right) \Psi_{j}(c) \\
= & \frac{1}{2 m c}\binom{\mathbf{0}}{\left(V_{-}-\lambda\right)(\sigma \cdot D) \psi_{j}}=O\left(\frac{1}{c}\right) .
\end{aligned}
$$

Here we used the assumption that $(\sigma \cdot D) u$ and $V_{-}(\sigma$. $D) u \in \mathbf{h}^{2}$. Thus we obtain the first statement of the following lemma.

Lemma 2.4. Suppose the conditions in Theorem 2.1. Let $\psi_{j}, \Psi_{j}(c), \Psi$ be as above, and let $P:=$ $E_{+}(\{\lambda\})$, that is,

$$
P \Phi=\sum_{j=1}^{m}\left\langle\Phi, \Psi_{j}\right\rangle \Psi_{j} \quad(\Phi \in \mathcal{H}) .
$$

Let P_{c} be the orthogonal projection on the subspace spanned by $\left\{\Psi_{j}(c)\right\}_{j=1,2, \ldots, m}$. Then we have

$$
\begin{gather*}
\left\|\left(I-E_{c}\left(J_{c}^{+}\right)\right) \Psi_{j}(c)\right\|=O\left(c^{\tau-1}\right), \tag{5}\\
\left(I-E_{c}\left(J_{c}^{+}\right)\right) P_{c} \Phi \rightarrow 0, \\
P_{c} \Phi \rightarrow P \Phi \\
E_{c}\left(I_{c}^{+}\right) Q_{+} \Phi \rightarrow P \Phi, \tag{8}
\end{gather*}
$$

strongly in \mathcal{H} as $c \rightarrow \infty$ for every $\Phi \in \mathcal{H}$.
The relation (6) is a consequence of (5). The property (7) is obvious, and (8) follows from (4) in Lemma 2.3.

Proof of Theorem 2.1. The above (7) and (8) yield

$$
\begin{aligned}
& \left\|E_{c}\left(J_{c}^{+}\right)\left(I-P_{c}\right) Q_{+} \Phi\right\| \\
\leq & \left\|E_{c}\left(J_{c}^{+}\right)(I-P) Q_{+} \Phi\right\| \\
& +\left\|E_{c}\left(J_{c}^{+}\right)\left(P-P_{c}\right) Q_{+} \Phi\right\| \\
\leq & \left\|E_{c}\left(I_{c}^{+}\right) Q_{+}(I-P) \Phi\right\|+\left\|\left(P-P_{c}\right) Q_{+} \Phi\right\| \\
& \rightarrow 0 \quad(c \rightarrow \infty)
\end{aligned}
$$

which together with (6) and (7) gives

$$
\begin{aligned}
& E_{c}\left(J_{c}^{+}\right) Q_{+} \Phi-P \Phi \\
= & E_{c}\left(J_{c}^{+}\right)\left(I-P_{c}\right) Q_{+} \Phi-\left(I-E_{c}\left(J_{c}^{+}\right)\right) P_{c} Q_{+} \Phi \\
& +P_{c} Q_{+} \Phi-P \Phi \rightarrow 0 .
\end{aligned}
$$

Consequently, we have from (8)

$$
\begin{aligned}
& E_{c}\left(I_{c}^{+} \backslash J_{s}^{+}\right) Q_{+} \Phi \\
= & E_{c}\left(I_{c}^{+}\right) Q_{+} \Phi-E_{c}\left(J_{s}^{+}\right) Q_{+} \Phi \\
& \rightarrow 0
\end{aligned}
$$

which completes the proof.
3. An application to potentials diverging at infinity. We apply Theorem 2.1 to the case when V is scalar and diverges to infinity as $|x| \rightarrow \infty$.

If $b_{j}(x) \in C^{1}$ and $v(x) \in C^{0}$ satisfies

$$
v(x) \geq-C_{1}-C_{2}|x|^{2} \quad\left(C_{1}, C_{2}>0\right)
$$

S_{+}on $C_{0}^{\infty}\left(\mathbf{R}^{3}\right)$ is essentially self-adjoint in \mathbf{h}^{2}. This fact can be shown along the lines of Ikebe-Kato [7].

It can be shown by Rellich's criterion (e.g., Reed-Simon [11, Theorem XIII.65]) that, if we assume

$$
\begin{equation*}
v(x) \rightarrow+\infty \quad(|x| \rightarrow \infty) \tag{9}
\end{equation*}
$$

the spectrum of S_{+}is purely discrete, that is, the spectrum $\sigma\left(S_{+}\right)$consists of discrete eigenvalues with finite multiplicity. As an application of Theorem 2.1 we give the following

Theorem 3.1. Assume that each $b_{j}(x) \in C^{3}$, and $v(x) \in C^{1}\left(\mathbf{R}^{3}\right)$ satisfies (9) and

$$
\begin{equation*}
|(\nabla v)(x)|=o\left(v(x)^{3 / 2}\right) \quad(|x| \rightarrow \infty) \tag{10}
\end{equation*}
$$

Let

$$
\lambda_{1}<\lambda_{2}<\cdots \lambda_{n}<\cdots \rightarrow+\infty \quad(n \rightarrow \infty)
$$

be the discrete eigenvalues of S_{+}. Fix an eigenvalue λ_{N}. Let us take any interval $I=(a, b) \ni \lambda_{N}$ such that $\bar{I} \subset\left(\lambda_{N-1}, \lambda_{N+1}\right)$, and I_{c}^{+}, J_{c}^{+}as in Theorem 2.1. Then we have

$$
\begin{gathered}
E_{c}\left(I_{c}^{+} \backslash J_{c}^{+}\right) Q_{+} \Phi \rightarrow 0 \\
\left.E_{c}\left(J_{c}^{+}\right) Q_{+} \Phi \rightarrow E_{+}\left(\left\{\lambda_{N}\right)\right\}\right) Q_{+} \Phi
\end{gathered}
$$

strongly in \mathcal{H} as $c \rightarrow \infty$ for any $\Phi \in \mathcal{H}$.
It suffices to show (iii) among the assumptions in Theorem 2.1. To this end we give the following lemma.

Lemma 3.2. Assume $b_{j}(x) \in C^{1}, v(x) \in$ $C^{1}\left(\mathbf{R}^{3}\right)$ with (9) and (10). Suppose that λ is an eigenvalue of S_{+}, and $u(x) \in D\left(S_{+}\right)$satisfies $S_{+} u=$ λu. Then we have

$$
\begin{equation*}
\int_{\mathbf{R}^{3}} v^{2}\left[\frac{|(\sigma \cdot D) u|^{2}}{2 m}+v|u|^{2}\right] d x<\infty . \tag{11}
\end{equation*}
$$

Sketch of the proof. Since $u \in D\left(S_{+}\right)$satisfies

$$
\begin{equation*}
\frac{1}{2 m}(\sigma \cdot D)^{2} u+v u=\lambda u \tag{12}
\end{equation*}
$$

we obtain

$$
\int_{\mathbf{R}^{3}}\left[\frac{|(\sigma \cdot D) u|^{2}}{2 m}+v|u|^{2}\right] d x<\infty
$$

In view of (9) there is a large number R_{0} such that $v(x)>0$ for $|x| \geq R_{0}$. We shall prove

$$
\begin{equation*}
\int_{|x| \geq R_{0}} v^{n / 2}\left[\frac{|(\sigma \cdot D) u|^{2}}{2 m}+v|u|^{2}\right] d x<\infty \tag{13}
\end{equation*}
$$

for $n=0,1,2, \ldots$, inductively. Assume (13) for n. Integrating the inner product of (12) and $v^{(n+1) / 2} u$ over $B\left(R_{1}, R\right):=\left\{x\left|R_{1} \leq|x| \leq R\right\}\right.$, we have

$$
\begin{aligned}
& \int_{B\left(R_{1}, R\right)} v^{(n+1) / 2}\left[\frac{|(\sigma \cdot D) u|^{2}}{2 m}+v|u|^{2}\right] d x \\
& -\lambda \int_{B\left(R_{1}, R\right)} v^{(n+1) / 2}|u|^{2} d x \\
& =\left[\int_{|x|=R}-\int_{|x|=R_{1}}\right] \frac{v^{(n+1) / 2}}{2 m} \\
& \quad \times \sum_{j=1}^{3} \frac{x_{j}}{|x|}\left\langle i \sigma_{j}(\sigma \cdot D) u, u\right\rangle d S \\
& \quad-\frac{n+1}{4 m} \int_{B\left(R_{1}, R\right)} v^{(n-1) / 2} \sum_{j=1}^{3} \frac{\partial v}{\partial x_{j}}\left\langle i \sigma_{j}(\sigma \cdot D) u, u\right\rangle d x
\end{aligned}
$$

for any $R_{0}<R_{1}<R$. Now, (13) gives

$$
\begin{aligned}
& \liminf _{R \rightarrow \infty}\left|\int_{|x|=R} v^{(n+1) / 2} \sum_{j=1}^{3} \frac{x_{j}}{|x|}\left\langle\sigma_{j}(\sigma \cdot D) u, u\right\rangle d S\right| \\
\leq & \liminf _{R \rightarrow \infty} \int_{|x|=R} v^{n / 2}\left[|(\sigma \cdot D) u|^{2}+v|u|^{2}\right] d S=0 .
\end{aligned}
$$

The assumptions (9) and (10) imply, for a sufficiently large R_{1},

$$
\begin{aligned}
& \frac{n+1}{4 m}\left|v^{(n-1) / 2} \sum_{j=1}^{3} \frac{\partial v}{\partial x_{j}}\left\langle\sigma_{j}(\sigma \cdot D) u, u\right\rangle\right| \\
& \leq \frac{1}{2} v^{(n+1) / 2}\left[\frac{|(\sigma \cdot D) u|^{2}}{2 m}+v|u|^{2}\right]
\end{aligned}
$$

for $|x| \geq R_{1}$. Thus we have

$$
\begin{aligned}
& \frac{1}{2} \int_{|x| \geq R_{1}} v^{(n+1) / 2}\left[\frac{|(\sigma \cdot D) u|^{2}}{2 m}+v|u|^{2}\right] d x \\
& \leq \int_{|x|=R_{1}} \frac{v^{(n+1) / 2}}{2 m}\left|\sum_{j=1}^{3} \frac{x_{j}}{|x|}\left\langle\sigma_{j}(\sigma \cdot D) u, u\right\rangle\right| d S \\
& \quad+|\lambda| \int_{|x| \geq R_{1}}\left(1+v^{(n+2) / 2}\right)|u|^{2} d x
\end{aligned}
$$

which yields (13) for $n+1$.
Remark 3.3. The property (13) is closely related to the exponential decay of eigenfunctions of Schrödinger equations (cf. Agmon [1], Shen [13]).

The condition (10) is satisfied by a large class of potentials $v(x)$ with (9) such as $v(x)=\exp \left(|x|^{2}\right)$, $v(x)=\exp \left[\exp \left(|x|^{2}\right)\right]$.

Remark 3.4. If $v(x)=O\left(|x|^{2}\right)$ at infinity with (9) and $b_{j}(x) \equiv 0(1 \leq j \leq 3)$,

$$
S_{-}=\frac{1}{2 m} \Delta+v(x)
$$

on $C_{0}^{\infty}\left(\mathbf{R}^{3}\right)^{2}$ is essentially self-adjoint in \mathbf{h}^{2} as stated at the beginning of this section. In this case both $\sigma\left(H_{c}\right)$ and $\sigma\left(S_{-}\right)$have purely continuous spectrum, which coincides with the whole real line \mathbf{R} under some additional conditions (see, e.g., Kalf-ŌkajiYamada [9], Uchiyama-Yamada [15]). Then Lemma 2.3 implies, for any interval [a, b],

$$
E_{c}\left(I_{c}^{-}\right) Q_{-} \Phi \rightarrow E_{-}(I) Q_{-} \Phi
$$

strongly in \mathcal{H} for every $\Phi \in \mathcal{H}$ as $c \rightarrow \infty$.
Remark 3.5. If $V(x)=v(x) \beta$, that is,

$$
V_{+}(x)=-V_{-}(x)=v(x) I_{2}, \quad S_{-}=-S_{+}
$$

with (9) and (10), not only $S_{ \pm}$but also H_{c} is purely discrete (e.g., Yamada [18]). Then the results as in Theorem 3.1 are valid for both S_{+}and S_{-}.

Acknowledgements. This work was partially supported by Open Research Center Project for Private Universities: matching fund subsidy from MEXT, 2004-2008.

The authors express their gratitude to the referee for valuable advices.

References

[1] S. Agmon, Lectures on exponential decay of solutions of second-order elliptic equations: bounds on eigenfunctions of N-body Schrödinger operators, Princeton Univ. Press, Princeton, NJ, 1982.
[2] L. Amour, R. Brummelhuis and J. Nourrigat, Resonances of the Dirac Hamiltonian in the non relativistic limit, Ann. Henri Poincaré 2 (2001), no. 3, 583-603.
[3] R. J. Cirincione and P. R. Chernoff, Dirac and Klein-Gordon equations: convergence of solutions in the nonrelativistic limit, Comm. Math. Phys. 79 (1981), no. 1, 33-46.
[4] D. R. Grigore, G. Nenciu and R. Purice, On the nonrelativistic limit of the Dirac Hamiltonian, Ann. Inst. H. Poincaré Phys. Théor. 51 (1989), no. 3, 231-263.
[5] B. Helffer and J. Sjöstrand, Equation de Schrödinger avec champ magnétique et équation de Harper, in Schrödinger operators (Sønderborg, 1988), 118-197, Lecture Notes in Phys., 345, Springer, Berlin, (1989).
[6] W. Hunziker, On the nonrelativistic limit of the Dirac theory, Comm. Math. Phys. 40 (1975), 215-222.
[7] T. Ikebe and T. Kato, Uniqueness of the selfadjoint extension of singular elliptic differential operators, Arch. Rational Mech. Anal. 9 (1962), 77-92.
[8] Isozaki, H., Many-body Schrödinger equations, Springer-Verlag, Tokyo, 2004. (In Japanese).
[9] H. Kalf, T. Ōkaji and O. Yamada, Absence of eigenvalues of Dirac operators with potentials diverging at infinity, Math. Nachr. 259 (2003), 19-41.
[10] M. Reed and B. Simon, Methods of modern mathematical physics. I. Functional analysis, Academic Press, New York, 1972.
[11] M. Reed and B. Simon, Methods of modern mathematical physics. IV. Analysis of operators, Academic Press, New York, 1978.
[12] K. M. Schmidt and O. Yamada, Spherically symmetric Dirac operators with variable mass and potentials infinite at infinity, Publ. Res. Inst. Math. Sci. 34 (1998), no. 3, 211-227.
[13] Z. Shen, Eigenvalue asymptotics and exponential decay of eigenfunctions for Schrödinger operators with magnetic fields, Trans. Amer. Math. Soc. 348 (1996), no. 11, 4465-4488.
[14] E. C. Titchmarsh, A problem in relativistic quantum mechanics, Proc. London Math. Soc. (3) 11 (1961), 169-192.
[15] J. Uchiyama and O. Yamada, Sharp estimates of lower bounds of polynomial decay order of eigenfunctions, Publ. Res. Inst. Math. Sci. 26 (1990), no. 3, 419-449.
[16] K. Veselić, The nonrelativistic limit of the Dirac equation and the spectral concentration, Glasnik Mat. Ser. III 4 (24) (1969), 231-241.
[17] K. Yajima, Nonrelativistic limit of the Dirac theory, scattering theory, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 23 (1976), no. 3, 517-523.
[18] O. Yamada, On the spectrum of Dirac operators with the unbounded potential at infinity, Hokkaido Math. J. 26 (1997), no. 2, 439-449.

[^0]: 2000 Mathematics Subject Classification. Primary 35Q40; Secondary 35P99, 81Q10.
 *) Department of Computer Science, Ehime University, 3, Bunkyo-cho, Matsuyama, Ehime 790-8577.
 **) Department of Mathematical Sciences, Ritsumeikan University, Noji Higashi 1-chome 1-1, Kusatsu, Shiga 525-8577.

