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1. Introduction. In 1976 Lieb and Thirring
proved the following inequality.

Theorem 1.1 ([4]). Let n € N. Then there
erists a positive constant ¢, such that for every
family {¢;}N.; in H'(R™) which is orthonormal in
L?(R™), we have

N 1+2/n N
(1) / <Z |¢i(’£)|2> dr < e, Y |[Veil®.
R" \i5} i=1
In this theorem H'(R™) denotes the Sobolev
space and ||- || is the norm of L?(R™). In [4] Lieb and
Thirring applied this inequality to the problem of the
stability of matter. Ghidaglia, Marion, and Temam
proved a generalization of (1) under the suborthonor-
mal condition on {¢;}, where {¢;}}¥; in L2(R") is
called suborthonormal if the inequality

N N
Z §i&j(9i, 95) < Z &I
ij=1 i=1
holds for all §; € C,i=1,..., N, where (-, - ) means
the L? inner product ([2]). They applied the inequal-
ity (1) to the estimate of the dimension of attractors
associated with partial differential equations. In this
paper we shall give a weighted LP version of (1) un-
der the suborthonormal condition on {¢;}.

For the statement of our result we need to re-
call the definition of Ap,-weights (c.f. [3, 5]). By a
cube in R™ we mean a cube which sides are par-
allel to coordinate axes. Let w be a non-negative,
locally integrable function on R™. We say that w is
an A,-weight for 1 < p < oo if there exists a positive
constant C' such that

1 1 /(1) )p 1
Q|/Qw(x)dx(|Q|/Qw(x) dx <C
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We give a weighted LP version of the Sobolev-Lieb-Thirring inequality for sub-
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for all cubes @ C R™. For example, w(x) = |z|® is
an A,-weight when —n < a < n(p —1).

We say that w is an Aj-weight if there exists a
positive constant C' such that

1
@'/Qw(y) dy < Cw(z) ae. zx€Q

for all cubes @ C R™. If —n < a < 0, then w(x) =
|z|* is an Aj-weight. Let A, be the class of A,-
weights. The inclusion A, C A, holds for p < g.

A nonnegative, locally integrable function w on
R™ is called a weight function. For a weight function
w we define

LP(w) = {f: measurable on R",

[ 1@rut) de < oo

The following is a conclusion of [7, Theorem 1.2]
and [6, Lemma 3.2].

Theorem 1.2. Letn € N, 3 < n, w € As,
and w2 € Ay 2. Then there exists a positive con-
stant ¢ such that for every family {¢;}}, in L*(R™)
which is suborthonormal in L*(R™) and |V¢;| €
L*(w),i=1,...,N, we have

N 14+2/n
i\ T 2 w(x)dx
| (;m( >|> ()d

N
<3 /R [V61(a) Pu(z) do,

where ¢ depends only on n and w.

By using this theorem we can prove the follow-
ing weighted LP version of the Sobolev-Lieb-Thirring
inequality.

Theorem 1.3. Letn € N and 3 < n. Let
2n/(n+2) < p < n, p# 2, and w be a weight
function. When p > 2, we assume that w™/("—P) ¢
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Apn—2)/@2(m—p))- When p < 2, we assume that
w/("=2) € Ay,

Then there exists a positive constant ¢ such that
for every family {¢;}XN. in L2*(R™) which is sub-
orthonormal in L*(R™) and |V¢;| € LP(w), i =

1,..., N, we have

N (1+2/n)p/2
) w(z) dz

| <Z¢i<x>2
i=1
N p/2
< c/ (Z |V¢i(x)2> w(z) dz,
" \i=1
where ¢ depends only on n,p and w.

This is a new result even in the case w = 1.
When 2 < p < n, an example of w is given by w(x) =
|z|% —n+p < a <n(p—2)/2. When 2n/(n+2) <
p < 2, an example of w is given by w(z) = |z|?,
—n+2<a<0.

2. Proof of Theorem 1.3. Let M be the
Hardy-Littlewood maximal operator, that is,

M(f)(e) = sup o [ 1) do,
where f is a locally integrable function on R™ and
the supremum is taken over all cubes @ which con-
tain x. The following proposition is proved in [3,
Chapter IV] or [5, Chapter V].

Proposition 2.1. (i) Let 1 < p < oo and
w be a weight function on R™. Then there exists a
positive constant ¢ such that

M(f)Pwdx < c/ | f|Pw dx
R" R"

for all f € LP(w) if and only if w € A,.

(ii) Let1 < p < oo and w € A,. Then there exists
aq€(1,p) such that w € A,.

(iii) Let 0 <7 < 1 and f be a locally integrable func-
tion on R™ such that M(f)(x) < oo a.e. Then
M(f)T € A

(iv) Let 1 < p < oo0. Then w € A, if and only if
wl? € Ay, where p~1 —i—p’_l =1.

(v) Let 1 < p < oo and wy,ws € Aj.
wlw;_p € A,

Then

Proof of Theorem 1.3. Our proof is very
similar to that of the extrapolation theorem by Rubio
de Francia (c.f. [1, Theorem 7.8]). In our proof the
integral means that over R™.

Let 2 < p <mnand 2/p+1/g =1. We remark
that the assumption w™ ("—P) ¢ Ap(n—2)/2(n—p))
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leads to w € A, by an easy calculation. Let u €
L (w), u >0, and |[ul|pa(w) = 1.

Since w™/("=P) ¢ Ap(n-2)/(2(n—p))> We have
w2/ (P=2) S Ap(n72)/(n(p72)) by (IV) of Proposi-
tion 2.1. Hence there exists a v such that n/(n —
2) < v < q and w2/ (P=2) ¢ Ap/(’y(p—Q)) by (ii) of
Proposition 2.1. Then we have uw < M ((uw)?)'/7
a.e. Because

w P = w0 A0y = Agyy

and

/M((uw)'y)q/vwﬂq/p dr
(2)
< c/(uw)qw72q/p dx = c/qu dx =c

by (i) of Proposition 2.1, we get M ((uw)?)(x) < oo
a.e. Hence M((uw)?)'/7 € A; by (iii) of Proposi-

tion 2.1. Let & = n/((n —2)y). Then 0 < a < 1
and

M ((uw)) ™ = (M ((ww)")* 12 € Ay o,

where we used M ((uw)7)® € A; and (v) of Proposi-
tion 2.1. Let

N
p(z) = |¢i(x)].
i=1
Then we have
/p1+2/nUUJd£I}

< / P27 M (waw) ) dae

< 0/ <i |V¢¢|2> M ((uw)) /7 da

<c /<§:|V¢z‘|2>p/2wdx 2/p
" (/ M ((uw) ") Yw=2/7 dx)l/q

N p/2 2/p
<c /<Z|V¢Z|2> wdz
i=1

where we used Theorem 1.2 and (2). If we take the
supremum for all u € LY (w), u > 0, and |[ul|pa(w) =
1, then we get

2/p
( / 1+2/mp/2,, dx)
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2
N /P

p/2
<c /<Z|V¢i2) wdx

i=1

Next we consider the case 2n/(n + 2) < p
< 2. We remark that w € A; by the assumption
w™/ ("2 ¢ A;. Let

N 1/2
f= (ZW@-Q) :
i=1

We can take v such that (2 — p)n/2 < v < p. Then

/M(f"’)p/”*wd;vgc/fpwdx<oo,

where we used w € A; C A,/ and (i) of Proposi-
tion 2.1. Hence we have M (f7)(x) < co a.e. and

M(f“/)(%p)n/(%) €A
by (iii) of Proposition 2.1. Furthermore we have
M(f7)~C=P)/7y e Ay,
where we used

M(fW)(%p)/v €A, we A,

and (v) of Proposition 2.1. Moreover
{M(f7)=C=P) /vy /2
— M(f'v)(2—p)n/(2v)(wn/(n—2))(1—n/2) € Anjo

because w™/ ("=2) ¢ A;. Therefore

/ P2/ 20,

/ pH2/m)p/ 2 V(7Y 2=P)p/(2)

x M(f7)E=PP/(2) gy

p/2
( 1+2/nM (f7)~ =Pl 7y da:)

1-p/2
X </M(f7)p/“’wdx> ’
p/2
<ec (/ f2M(f7)f(2fp)/7w dw)
1-p/2
X (/fpwdx>
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p/2
<ec (/M(f’Y)2/’YM(f’Y)(2P)/’Yw d$>

1-p/2
X < fPw dm)
/ p/2 1-p/2
Sc(/M(f“’)p/"’wdx) (/f”wdw)

<ec / fPwdz,
where we used Theorem 1.2 in the second inequality.
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