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Ray class field of prime conductor of a real quadratic field
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Abstract: Let F be a real quadratic field and p a prime ideal of degree 2. We construct
a quadratic extension of the Hilbert class field in the ray class field of conductor p.

Key words: Algebraic number field; unit; distribution.

Let F be a real quadratic field and oF , ε the
maximal order and a fundamental unit of F , respec-
tively, and χ the character of F , that is χ(p) = 1 if
and only if p splits in F for a rational prime p. For
a prime number p, we define �p by

1 if χ(p) = 1,
(p− 1)/2 if χ(p) = N(ε) = −1,
p− 1 if χ(p) = −N(ε) = −1,

where N denotes the norm from F to the rational
number field Q.

Let p be a prime ideal lying above p, and denot-
ing by E(p) the subgroup of (oF /p)× consisting of
classes represented by units of F , we put

Ip = [(oF /p)× : E(p)].

The class field theory tells us that the degree of the
ray class field F (p) of conductor p of F over F is a
product of the class number of F and Ip. It is easy
to see that �p divides Ip, and so Ip is a product of
two integers �p and Ip/�p. The behavior of the num-
ber Ip/�p depends heavily on each prime. However
we have shown that under generalized Riemann hy-
potheses the set of prime ideals satisfying Ip/�p =
1 has a positive (modified natural) density in each
case ([IK, L, M, CKY, R]). Hence the subfield F ′(p)
corresponding to the degree �p may be considered a
basic part of the ray class field F (p).

The field F ′(p) is given as follows:
(i) F ′(p) = the Hilbert class field FH when χ(p) =

1,
(ii) F ′(p) = the composite of FH and Q(ζp + ζ−1

p )
when χ(p) = N(ε) = −1,

(iii) F ′(p) = a quadratic extension of the composite
of FH and Q(ζp+ζ−1

p ) when χ(p)=−N(ε)=−1.
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Here the Hilbert class field FH is in the weak sense,
i.e. it is real in this case, and ζp is a primitive pth
root of unity.

The first aim is to describe explicitly the
quadratic extension in the case (iii) (Theorem 1).

The second is to show that the fickle extension
degree Ip/�p = [F (p) : F ′(p)] is controlled by the
property of the Frobenius automorphism of the fields
F (ζ2m, m

√
ε) independent of F (p) (Theorem 2).

The followings are known.
Lemma 1. Let K/F be a finite abelian exten-

sion and let L = K(
√
a) (a ∈ K) be a quadratic

extension of K. Then the extension L/F is abelian
if and only if there is an element bκ ∈ K for any au-
tomorphism κ ∈ Gal(K/F ) such that κ(a) = ab2κ and
κ(bη)bκ = η(bκ)bη hold for any η, κ ∈ Gal(K/F ).

Lemma 2. Let L = K(
√
a) be a quadratic ex-

tension of an algebraic number field K. Let p be a
prime ideal of K. If ordp a is odd, then p is rami-
fied at L/K. If p � 2 and ordp a is even, then p is
unramified at L/K. If p | 2 and ordp a = 0, then p

is unramified at L/K if and only if x2 ≡ a mod p2m

has a solution in oK where m = ordp 2.
Hereafter till Theorem 1, F = Q(

√
D) is a real

quadratic field and ε is a fundamental unit of F and
assume N(ε) = 1. We denote the (real) Hilbert class
field of F by FH . Because of the assumption N(ε) =
1, there is a totally positive element α ∈ FH such
that a field FH(

√−α) is abelian over F and every
finite place of F is unramified. We can take α so
that (α, 2) = 1. By virtue of Lemma 2, α satisfies
that for a prime ideal p of F, ordp α is even and x2 ≡
−α mod 4 has a solution in oFH

. Using this α, we can
construct the quadratic extension of FH in question.

Lemma 3. Let p be an odd prime number un-
ramified at F/Q. Put a = (1 − ζp)(1 − ζ−1

p )α and
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K = FH(ζp+ζ−1
p ), where ζp is a primitive pth root of

unity. Then L = K(
√
a) is a real abelian extension

of F .
Proof. a is obviously totally positive and hence

L is real. For κ, η ∈ Gal(K/F ), we define odd num-
bers m,n by κ(ζp + ζ−1

p ) = ζn
p + ζ−n

p , η(ζp + ζ−1
p ) =

ζm
p + ζ−m

p . Then we have

κ(a)/a = (1 − ζn
p )(1 − ζ−n

p )κ(α)/

(1 − ζp)(1 − ζ−1
p )α

= (ζn−1
p + · · · + 1)

× ((ζ−1
p )n−1 + · · · + 1)κ(α)/α

= (ζ(n−1)/2
p + · · · + ζ−(n−1)/2

p )2

× κ(α)/α.

On the other hand, FH(
√−α)/F is abelian and

hence there is an element cκ ∈ FH such that
κ(−α)/(−α) = c2κ and cηη(cκ) = cκκ(cη) since
κ|FH

, η|FH
∈ Gal(FH/F ). Now we put bκ =

(ζ(n−1)/2
p + · · ·+ ζ

−(n−1)/2
p )cκ; then κ(a)/a = b2κ and

we have, because of p � m

bηη(bκ) = (ζ(m−1)/2
p + · · · + ζ−(m−1)/2

p )cη

× ((ζm
p )(n−1)/2 + · · · + (ζm

p )−(n−1)/2)

× η(cκ)

= ζ−(m−1)/2
p (ζm

p − 1)/(ζp − 1)

× ζ−m(n−1)/2
p ((ζm

p )n − 1)/(ζm
p − 1)

× cηη(cκ)

= ζ(1−mn)/2
p (ζmn

p − 1)/(ζp − 1)

× cηη(cκ).

Hence bηη(bκ) = bκκ(bη) holds. Thus L/F is abelian.

Lemma 4. The conductor of L/F is p if p is
an odd prime number and unramified at F/Q.

Proof. First, we show that every prime ideal
not lying above p is unramified at L/K. Let q be a
prime ideal of K. If q � 2p, then ordq(a) = ordq(α)
is even and hence q is unramified at L/K. Suppose
q | 2; then by Lemma 2, we have only to show x2 ≡
(1− ζp)(1− ζ−1

p )α mod 4 has a solution in oK . Since
we have

(1 − ζp)(1 − ζ−1
p )

= (1 − ζ−(p−1)
p )(1 − ζp−1

p )

= (ζ(p−1)/2
p − ζ−(p−1)/2

p )

× (ζ−(p−1)/2
p − ζ(p−1)/2

p )

= −(ζ(p−1)/2
p − ζ−(p−1)/2

p )2

= −(ζ(p−1)/2
p + ζ−(p−1)/2

p )2 + 4

≡ −(ζ(p−1)/2
p + ζ−(p−1)/2

p )2 mod 4,

and x2 ≡ −α mod 4 has a solution in oFH
, there is a

solution x in oK for x2 ≡ (1 − ζp)(1 − ζ−1
p )α mod 4.

Therefore q is unramified at L/K. Thus every prime
ideal not lying above p is unramified at L/K and
hence at L/F . Let P be a prime ideal of L lying
above p. For Hasse’s function ϕL/F with respect
to P, and for the last non-trivial ramification group
Vt(P;L/F ), the P∩F -factor of the conductor of L/F
is given by (P∩F )ϕ−1

L/F
(t)+1. For Hasse’s function, we

know ϕL/F = ϕL/FH
ϕFH/F and ϕFH/F is the iden-

tity since FH/F is unramified. On the other hand, a
divisor [L : FH ] of p−1 is prime to p and then the first
ramification group V1(P;L/FH) is trivial since its or-
der is a power of p. Thus ϕL/F (v) = ϕL/FH

(v) = ev

holds if v ≥ 0, where e is the ramification index of
P at L/FH . Since the last non-trivial ramification
group of P with respect to L/F is the inertia group,
the contribution of P ∩ F to the conductor of L/F
is P ∩ F itself.

Thus we have shown, as a special case of
Lemma 4

Theorem 1. Let F be a real quadratic field
and suppose that the norm of the fundamental unit
ε is 1. Then for a prime number p which remains
prime in F, the quadratic extension of the composite
field of the Hilbert class field and Q(ζp + ζ−1

p ) in the
ray class field of F of conductor p is given by L in
Lemma 3.

Theorem 2. Let F be a real quadratic field
and ε the fundamental unit. Let p be an odd prime
number unramified in F and put Fm = F (ζ2m, m

√
ε)

for a natural number m. Then Ip/�p is the maximal
integer m relatively prime to p such that
(i) p is completely decomposable in Fm if χ(p) = 1,
(ii) the Frobenius automorphism ρ of a prime ideal

P of Fm lying above p satisfies

ζρ
m = ζ−1

m , m
√
ε
2ρ = m

√
ε
−2

if χ(p) = N(ε) = −1.
(iii) the Frobenius automorphism ρ of a prime ideal

P of Fm lying above p satisfies

ζρ
2m = ζ−1

2m,
m
√
ε
ρ = m

√
ε
−1

if χ(p) = −N(ε) = −1.
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Proof. This is an immediate corollary of
Lemma 4 in [K2]. Define the polynomial g(x) by
x − 1, x + 1, x + 1 according to the case (i), (ii),
(iii), respectively. The automorphism η ∈ Gal(F/Q)
stands for the identity in the case (i), and for the
non-trivial automorphism, otherwise. Then g(x) is a
primitive integral polynomial of minimal degree such
that the group

{ug(η) | u ∈ o×F }
is finite, and the order δ1 of the group is 1, 2, 1 ac-
cording to the case (i), (ii), (iii), respectively. The
polynomial h(x) is defined by 1 in case of (i), and
x− 1, otherwise. Applying Lemma 4 in [K2] to this
situation with K = F , we have, for ∀u ∈ o×F

mh(p)/δ1 | Ip ⇔ m
√
u

δ1g(ρ) = 1

for the Frobenius automorphism ρ of a prime ideal
P of Fm lying above p, where m is supposed to be
relatively prime to p. This completes the proof, since
h(p)/δ1 = �p holds.

Acknowledgement. This work was partially
supported by Grant-in-Aid for Scientific Research
(C), The Ministry of Education, Culture, Sports, Sci-
ence and Technology of Japan.

References

[CKY] Chen, Y-M. J., Kitaoka, Y., and Yu, J.: Distri-
bution of units of real quadratic number fields.
Nagoya Math. J., 158, 167–184 (2000).

[ H ] Hooley, C.: On Artin’s Conjecture. J. Reine
Angew. Math., 225, 209–220 (1967).

[ IK] Ishikawa, M., and Kitaoka, Y.: On the distribution
of units modulo prime ideals in real quadratic
fields. J. Reine Angew. Math., 494, 65–72 (1998).

[K1] Kitaoka, Y.: Distribution of units of a cubic field
with negative discriminant. J. Number Theory,
91, 318–355 (2001).

[K2] Kitaoka, Y.: Distribution of units of an algebraic
number field. Galois Theory and Modular Forms,
Developments in Mathematics. Kluwer Academic
Publishers, Boston, pp. 287–303 (2003).

[ L ] Lenstra, H. W. Jr.: On Artin’s conjecture and Eu-
clid’s algorithm in global fields. Invent. Math.,
42, 201–224 (1977).

[ M ] Masima, K.: The distribution of units in the
residue class field of real quadratic fields and
Artin’s conjecture. RIMS Kokyuroku, 1026,
156–166 (1998), (in Japanese).

[ R ] Roskam, H.: A quadratic analogue of Artin’s con-
jecture on primitive roots. J. Number Theory, 81,
93–109 (2000).


