Ray class field of prime conductor of a real quadratic field

By Yoshiyuki Kitaoka
Department of Mathematics, Meijo University
1-501, Shiogamaguchi, Tenpaku-ku, Nagoya, Aichi 468-8502
(Communicated by Shigefumi Mori, M. J. A., June 15, 2004)

Abstract

Let F be a real quadratic field and \mathfrak{p} a prime ideal of degree 2. We construct a quadratic extension of the Hilbert class field in the ray class field of conductor \mathfrak{p}.

Key words: Algebraic number field; unit; distribution.

Let F be a real quadratic field and o_{F}, ϵ the maximal order and a fundamental unit of F, respectively, and χ the character of F, that is $\chi(p)=1$ if and only if p splits in F for a rational prime p. For a prime number p, we define ℓ_{p} by

$$
\left\{\begin{array}{cl}
1 & \text { if } \chi(p)=1 \\
(p-1) / 2 & \text { if } \chi(p)=N(\epsilon)=-1 \\
p-1 & \text { if } \chi(p)=-N(\epsilon)=-1
\end{array}\right.
$$

where N denotes the norm from F to the rational number field \mathbf{Q}.

Let \mathfrak{p} be a prime ideal lying above p, and denoting by $E(\mathfrak{p})$ the subgroup of $\left(o_{F} / \mathfrak{p}\right)^{\times}$consisting of classes represented by units of F, we put

$$
I_{p}=\left[\left(o_{F} / \mathfrak{p}\right)^{\times}: E(\mathfrak{p})\right]
$$

The class field theory tells us that the degree of the ray class field $F(\mathfrak{p})$ of conductor \mathfrak{p} of F over F is a product of the class number of F and I_{p}. It is easy to see that ℓ_{p} divides I_{p}, and so I_{p} is a product of two integers ℓ_{p} and I_{p} / ℓ_{p}. The behavior of the number I_{p} / ℓ_{p} depends heavily on each prime. However we have shown that under generalized Riemann hypotheses the set of prime ideals satisfying $I_{p} / \ell_{p}=$ 1 has a positive (modified natural) density in each case ([IK, L, M, CKY, R]). Hence the subfield $F^{\prime}(\mathfrak{p})$ corresponding to the degree ℓ_{p} may be considered a basic part of the ray class field $F(\mathfrak{p})$.

The field $F^{\prime}(\mathfrak{p})$ is given as follows:
(i) $F^{\prime}(\mathfrak{p})=$ the Hilbert class field F_{H} when $\chi(p)=$ 1,
(ii) $F^{\prime}(\mathfrak{p})=$ the composite of F_{H} and $\mathbf{Q}\left(\zeta_{p}+\zeta_{p}^{-1}\right)$ when $\chi(p)=N(\epsilon)=-1$,
(iii) $F^{\prime}(\mathfrak{p})=$ a quadratic extension of the composite of F_{H} and $\mathbf{Q}\left(\zeta_{p}+\zeta_{p}^{-1}\right)$ when $\chi(p)=-N(\epsilon)=-1$.

[^0]Here the Hilbert class field F_{H} is in the weak sense, i.e. it is real in this case, and ζ_{p} is a primitive p th root of unity.

The first aim is to describe explicitly the quadratic extension in the case (iii) (Theorem 1).

The second is to show that the fickle extension degree $I_{p} / \ell_{p}=\left[F(\mathfrak{p}): F^{\prime}(\mathfrak{p})\right]$ is controlled by the property of the Frobenius automorphism of the fields $F\left(\zeta_{2 m}, \sqrt[m]{\epsilon}\right)$ independent of $F(\mathfrak{p})$ (Theorem 2).

The followings are known.
Lemma 1. Let K / F be a finite abelian extension and let $L=K(\sqrt{a})(a \in K)$ be a quadratic extension of K. Then the extension L / F is abelian if and only if there is an element $b_{\kappa} \in K$ for any automorphism $\kappa \in \operatorname{Gal}(K / F)$ such that $\kappa(a)=a b_{\kappa}^{2}$ and $\kappa\left(b_{\eta}\right) b_{\kappa}=\eta\left(b_{\kappa}\right) b_{\eta}$ hold for any $\eta, \kappa \in \operatorname{Gal}(K / F)$.

Lemma 2. Let $L=K(\sqrt{a})$ be a quadratic extension of an algebraic number field K. Let \mathfrak{p} be a prime ideal of K. If $\operatorname{ord}_{\mathfrak{p}} a$ is odd, then \mathfrak{p} is ramified at L / K. If $\mathfrak{p} \nmid 2$ and $\operatorname{ord}_{\mathfrak{p}} a$ is even, then \mathfrak{p} is unramified at L / K. If $\mathfrak{p} \mid 2$ and $\operatorname{ord}_{\mathfrak{p}} a=0$, then \mathfrak{p} is unramified at L / K if and only if $x^{2} \equiv a \bmod \mathfrak{p}^{2 m}$ has a solution in o_{K} where $m=\operatorname{ord}_{\mathfrak{p}} 2$.

Hereafter till Theorem $1, F=\mathbf{Q}(\sqrt{D})$ is a real quadratic field and ϵ is a fundamental unit of F and assume $N(\epsilon)=1$. We denote the (real) Hilbert class field of F by F_{H}. Because of the assumption $N(\epsilon)=$ 1 , there is a totally positive element $\alpha \in F_{H}$ such that a field $F_{H}(\sqrt{-\alpha})$ is abelian over F and every finite place of F is unramified. We can take α so that $(\alpha, 2)=1$. By virtue of Lemma 2, α satisfies that for a prime ideal \mathfrak{p} of $F, \operatorname{ord}_{\mathfrak{p}} \alpha$ is even and $x^{2} \equiv$ $-\alpha \bmod 4$ has a solution in $o_{F_{H}}$. Using this α, we can construct the quadratic extension of F_{H} in question.

Lemma 3. Let p be an odd prime number unramified at F / \mathbf{Q}. Put $a=\left(1-\zeta_{p}\right)\left(1-\zeta_{p}^{-1}\right) \alpha$ and
$K=F_{H}\left(\zeta_{p}+\zeta_{p}^{-1}\right)$, where ζ_{p} is a primitive pth root of unity. Then $L=K(\sqrt{a})$ is a real abelian extension of F.

Proof. a is obviously totally positive and hence L is real. For $\kappa, \eta \in \operatorname{Gal}(K / F)$, we define odd numbers m, n by $\kappa\left(\zeta_{p}+\zeta_{p}^{-1}\right)=\zeta_{p}^{n}+\zeta_{p}^{-n}, \eta\left(\zeta_{p}+\zeta_{p}^{-1}\right)=$ $\zeta_{p}^{m}+\zeta_{p}^{-m}$. Then we have

$$
\begin{aligned}
\kappa(a) / a= & \left(1-\zeta_{p}^{n}\right)\left(1-\zeta_{p}^{-n}\right) \kappa(\alpha) / \\
& \left(1-\zeta_{p}\right)\left(1-\zeta_{p}^{-1}\right) \alpha \\
= & \left(\zeta_{p}^{n-1}+\cdots+1\right) \\
& \times\left(\left(\zeta_{p}^{-1}\right)^{n-1}+\cdots+1\right) \kappa(\alpha) / \alpha \\
= & \left(\zeta_{p}^{(n-1) / 2}+\cdots+\zeta_{p}^{-(n-1) / 2}\right)^{2} \\
& \times \kappa(\alpha) / \alpha
\end{aligned}
$$

On the other hand, $F_{H}(\sqrt{-\alpha}) / F$ is abelian and hence there is an element $c_{\kappa} \in F_{H}$ such that $\kappa(-\alpha) /(-\alpha)=c_{\kappa}^{2}$ and $c_{\eta} \eta\left(c_{\kappa}\right)=c_{\kappa} \kappa\left(c_{\eta}\right)$ since $\kappa_{\mid F_{H}}, \eta_{\mid F_{H}} \in \operatorname{Gal}\left(F_{H} / F\right)$. Now we put $b_{\kappa}=$ $\left(\zeta_{p}^{(n-1) / 2}+\cdots+\zeta_{p}^{-(n-1) / 2}\right) c_{\kappa}$; then $\kappa(a) / a=b_{\kappa}^{2}$ and we have, because of $p \nmid m$

$$
\begin{aligned}
b_{\eta} \eta\left(b_{\kappa}\right)= & \left(\zeta_{p}^{(m-1) / 2}+\cdots+\zeta_{p}^{-(m-1) / 2}\right) c_{\eta} \\
& \times\left(\left(\zeta_{p}^{m}\right)^{(n-1) / 2}+\cdots+\left(\zeta_{p}^{m}\right)^{-(n-1) / 2}\right) \\
& \times \eta\left(c_{\kappa}\right) \\
= & \zeta_{p}^{-(m-1) / 2}\left(\zeta_{p}^{m}-1\right) /\left(\zeta_{p}-1\right) \\
& \times \zeta_{p}^{-m(n-1) / 2}\left(\left(\zeta_{p}^{m}\right)^{n}-1\right) /\left(\zeta_{p}^{m}-1\right) \\
& \times c_{\eta} \eta\left(c_{\kappa}\right) \\
= & \zeta_{p}^{(1-m n) / 2}\left(\zeta_{p}^{m n}-1\right) /\left(\zeta_{p}-1\right) \\
& \times c_{\eta} \eta\left(c_{\kappa}\right) .
\end{aligned}
$$

Hence $b_{\eta} \eta\left(b_{\kappa}\right)=b_{\kappa} \kappa\left(b_{\eta}\right)$ holds. Thus L / F is abelian.
Lemma 4. The conductor of L / F is p if p is an odd prime number and unramified at F / \mathbf{Q}.

Proof. First, we show that every prime ideal not lying above p is unramified at L / K. Let \mathfrak{q} be a prime ideal of K. If $\mathfrak{q} \nmid 2 p$, then $\operatorname{ord}_{\mathfrak{q}}(a)=\operatorname{ord}_{\mathfrak{q}}(\alpha)$ is even and hence \mathfrak{q} is unramified at L / K. Suppose $\mathfrak{q} \mid 2$; then by Lemma 2 , we have only to show $x^{2} \equiv$ $\left(1-\zeta_{p}\right)\left(1-\zeta_{p}^{-1}\right) \alpha \bmod 4$ has a solution in o_{K}. Since we have

$$
\begin{aligned}
& \left(1-\zeta_{p}\right)\left(1-\zeta_{p}^{-1}\right) \\
& =\left(1-\zeta_{p}^{-(p-1)}\right)\left(1-\zeta_{p}^{p-1}\right) \\
& =\left(\zeta_{p}^{(p-1) / 2}-\zeta_{p}^{-(p-1) / 2}\right) \\
& \quad \times\left(\zeta_{p}^{-(p-1) / 2}-\zeta_{p}^{(p-1) / 2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =-\left(\zeta_{p}^{(p-1) / 2}-\zeta_{p}^{-(p-1) / 2}\right)^{2} \\
& =-\left(\zeta_{p}^{(p-1) / 2}+\zeta_{p}^{-(p-1) / 2}\right)^{2}+4 \\
& \equiv-\left(\zeta_{p}^{(p-1) / 2}+\zeta_{p}^{-(p-1) / 2}\right)^{2} \bmod 4
\end{aligned}
$$

and $x^{2} \equiv-\alpha \bmod 4$ has a solution in $o_{F_{H}}$, there is a solution x in o_{K} for $x^{2} \equiv\left(1-\zeta_{p}\right)\left(1-\zeta_{p}^{-1}\right) \alpha \bmod 4$. Therefore \mathfrak{q} is unramified at L / K. Thus every prime ideal not lying above p is unramified at L / K and hence at L / F. Let \mathfrak{P} be a prime ideal of L lying above p. For Hasse's function $\varphi_{L / F}$ with respect to \mathfrak{P}, and for the last non-trivial ramification group $V_{t}(\mathfrak{P} ; L / F)$, the $\mathfrak{P} \cap F$-factor of the conductor of L / F is given by $(\mathfrak{P} \cap F)^{\varphi_{L / F}^{-1}(t)+1}$. For Hasse's function, we know $\varphi_{L / F}=\varphi_{L / F_{H}} \varphi_{F_{H} / F}$ and $\varphi_{F_{H} / F}$ is the identity since F_{H} / F is unramified. On the other hand, a divisor $\left[L: F_{H}\right]$ of $p-1$ is prime to p and then the first ramification group $V_{1}\left(\mathfrak{P} ; L / F_{H}\right)$ is trivial since its order is a power of p. Thus $\varphi_{L / F}(v)=\varphi_{L / F_{H}}(v)=e v$ holds if $v \geq 0$, where e is the ramification index of \mathfrak{P} at L / F_{H}. Since the last non-trivial ramification group of \mathfrak{P} with respect to L / F is the inertia group, the contribution of $\mathfrak{P} \cap F$ to the conductor of L / F is $\mathfrak{P} \cap F$ itself.

Thus we have shown, as a special case of Lemma 4

Theorem 1. Let F be a real quadratic field and suppose that the norm of the fundamental unit ϵ is 1 . Then for a prime number p which remains prime in F, the quadratic extension of the composite field of the Hilbert class field and $\mathbf{Q}\left(\zeta_{p}+\zeta_{p}^{-1}\right)$ in the ray class field of F of conductor p is given by L in Lemma 3.

Theorem 2. Let F be a real quadratic field and ϵ the fundamental unit. Let p be an odd prime number unramified in F and put $F_{m}=F\left(\zeta_{2 m}, \sqrt[m]{\epsilon}\right)$ for a natural number m. Then I_{p} / ℓ_{p} is the maximal integer m relatively prime to p such that
(i) p is completely decomposable in F_{m} if $\chi(p)=1$,
(ii) the Frobenius automorphism ρ of a prime ideal \mathfrak{P} of F_{m} lying above p satisfies

$$
\zeta_{m}^{\rho}=\zeta_{m}^{-1}, \quad \sqrt[m]{\epsilon}-2 \rho=\sqrt[m]{\epsilon}{ }^{-2}
$$

if $\chi(p)=N(\epsilon)=-1$.
(iii) the Frobenius automorphism ρ of a prime ideal \mathfrak{P} of F_{m} lying above p satisfies

$$
\left.\zeta_{2 m}^{\rho}=\zeta_{2 m}^{-1}, \quad \sqrt[m]{\epsilon}=\sqrt[m]{\epsilon}\right]^{-1}
$$

if $\chi(p)=-N(\epsilon)=-1$.

Proof. This is an immediate corollary of Lemma 4 in [K2]. Define the polynomial $g(x)$ by $x-1, x+1, x+1$ according to the case (i), (ii), (iii), respectively. The automorphism $\eta \in \operatorname{Gal}(F / \mathbf{Q})$ stands for the identity in the case (i), and for the non-trivial automorphism, otherwise. Then $g(x)$ is a primitive integral polynomial of minimal degree such that the group

$$
\left\{u^{g(\eta)} \mid u \in o_{F}^{\times}\right\}
$$

is finite, and the order δ_{1} of the group is $1,2,1$ according to the case (i), (ii), (iii), respectively. The polynomial $h(x)$ is defined by 1 in case of (i), and $x-1$, otherwise. Applying Lemma 4 in [K2] to this situation with $K=F$, we have, for ${ }^{\forall} u \in o_{F}^{\times}$

$$
m h(p) / \delta_{1} \mid I_{p} \Leftrightarrow \sqrt[m]{u}{ }^{\delta_{1} g(\rho)}=1
$$

for the Frobenius automorphism ρ of a prime ideal \mathfrak{P} of F_{m} lying above p, where m is supposed to be relatively prime to p. This completes the proof, since $h(p) / \delta_{1}=\ell_{p}$ holds.

Acknowledgement. This work was partially supported by Grant-in-Aid for Scientific Research (C), The Ministry of Education, Culture, Sports, Science and Technology of Japan.

References

[CKY] Chen, Y-M. J., Kitaoka, Y., and Yu, J.: Distribution of units of real quadratic number fields. Nagoya Math. J., 158, 167-184 (2000).
[H] Hooley, C.: On Artin's Conjecture. J. Reine Angew. Math., 225, 209-220 (1967).
[IK] Ishikawa, M., and Kitaoka, Y.: On the distribution of units modulo prime ideals in real quadratic fields. J. Reine Angew. Math., 494, 65-72 (1998).
[K1] Kitaoka, Y.: Distribution of units of a cubic field with negative discriminant. J. Number Theory, 91, 318-355 (2001).
[K2] Kitaoka, Y.: Distribution of units of an algebraic number field. Galois Theory and Modular Forms, Developments in Mathematics. Kluwer Academic Publishers, Boston, pp. 287-303 (2003).
[L] Lenstra, H. W. Jr.: On Artin's conjecture and Euclid's algorithm in global fields. Invent. Math., 42, 201-224 (1977).
[M] Masima, K.: The distribution of units in the residue class field of real quadratic fields and Artin's conjecture. RIMS Kokyuroku, 1026, 156-166 (1998), (in Japanese).
[R] Roskam, H.: A quadratic analogue of Artin's conjecture on primitive roots. J. Number Theory, 81, 93-109 (2000).

[^0]: 2000 Mathematics Subject Classification. 11R37.

