
No. 4] Proc. Japan Acad., 80, Ser. A (2004) 21

A note on the exponential diophantine equation a� + b� = c�
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Abstract: Let a, b, c be fixed coprime positive integers. In this paper we prove that if
b ≡ 3 (mod 4), a ≡ −1 (mod b2l), a2 + b2l−1 = c and c is odd, where l is a positive integer, then
the equation ax + by = cz has only the positive integer solution (x, y, z) = (2, 2l− 1, 1).
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1. Introduction. Let Z, N be the sets of all
integers and positive integers respectively. Let a, b,
c be fixed coprime positive integers. Recently, using
the theory of linear forms in logarithms, Terai [7]
proved that if b is a prime with b ≡ 3 (mod 4), a ≡
−1 (mod b2l), a2 + b2l−1 = c and c is odd, where
l ∈ {1, 2}, then the equation

(1) ax + by = cz, x, y, z ∈ N

has only the solution (x, y, z) = (2, 2l− 1, 1). In this
paper, by means of different approach, we shall show
that the conditions b is a prime and l ∈ {1, 2} can
be eliminated from the above-mentioned result. We
prove a general result as follows:

Theorem. Let l be a positive integer. If b ≡ 3
(mod 4), a ≡ 1 (mod b2l), a2 + b2l−1 = c and c is
odd, then (1) has only the solution (x, y, z) = (2, 2l−
1, 1).

2. Preliminaries.
Lemma 1 ([2, 3]). The equation X2+32m+1 =

Y n, X, Y,m, n ∈ Z, X > 0, Y > 0, gcd(X, Y ) = 1,
m ≥ 0, n > 1 has only the solution (X, Y,m, n) =
(10, 7, 2, 3) with n an odd prime.

Let D be a positive integer, and let h(−4D) de-
note the class number of positive binary quadratic
forms of discriminant −4D.

Lemma 2. Let k be an odd integer with
gcd(D, k) = 1. If D > 3, then every solution
(X, Y, Z) of the equation

X2 +DY 2 = kZ, X, Y, Z ∈ Z,

gcd(X, Y ) = 1, Z > 0

can be expressed as

2000 Mathematics Subject Classification. 11D61.

Z = Z1t, t ∈ N,

X + Y
√−D = λ1(X1 + λ2Y1

√−D)t,

λ1λ2 ∈ {1,−1},
where X1, Y1, Z1 are positive integers satisfying

X2
1 +DY 2

1 = kZ1 , gcd(X1, Y1) = 1,

h(−4D) ≡ 0 (mod Z1).

Proof. This lemma is the special case of [6,
Theorems 1 and 2] for D1 = 1 and D2 < 3.

Lemma 3 ([5, Theorems 12.10.1 and 12.14.3]).
For any positive integer D, we have

h(−4D) <
4
√
D

π
log(2e

√
D).

Let α, β be algebraic integers. If α+ β and αβ
are nonzero coprime integers and α/β is not a root
of unity, then (α, β) is called a Lucas pair. Further,
let A = α+ β and C = αβ. Then we have

α =
1
2
(A+ λ

√
B), β =

1
2
(A− λ

√
B), λ ∈ {1,−1},

where B = A2 − 4C. We call (A,B) the parameters
of the Lucas pair (α, β). Two Lucas pairs (α1, β1)
and (α2, β2) are equivalent if α1/α2 = β1/β2 = ±1.
Given a Lucas pair (α, β), one defines the corre-
sponding sequence of Lucas numbers by

Ls(α, β) =
αs − βs

α− β
, s = 0, 1, 2, · · · .

For equivalent Lucas pairs (α1, β1) and (α2, β2), we
have Ls(α1, β1) = ±Ls(α2, β2) for any s ≥ 0. A
prime p is called a primitive divisor of Ls(α, β) (s >
1) if

p |Ls(α, β) and p � BL1(α, β) · · ·Ls−1(α, β).
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A Lucas pair (α, β) such that Ls(α, β) has no prim-
itive divisors will be called a s-defective Lucas pair.
Further, a positive integer s is called totally non-
defective if no Lucas pair is s-defective.

Lemma 4 ([8]). Let s satisfy 4 < s ≤ 30 and
s �= 6. Then, up to equivalence, all parameters of
s-defective Lucas pairs are given as follows:
(i) s = 5, (A,B) = (1, 5), (1,−7), (2,−40),

(1,−11), (1,−15), (12,−76), (12,−1364).
(ii) s = 7, (A,B) = (1,−7), (1,−19).
(iii) s = 8, (A,B) = (2,−24), (1,−7).
(iv) s = 10, (A,B) = (2,−8), (5,−3), (5,−47).
(v) s = 12, (A,B) = (1, 5), (1,−7), (1,−11),

(2,−56), (1,−15), (1,−19).
(vi) s ∈ {13, 18, 30}, (A,B) = (1,−7).

Lemma 5 ([1]). If s > 30, then s is totally
non-defective.

3. Proof of theorem. Let (x, y, z) be a so-
lution of (1) with (x, y, z) �= (2, 2l− 1, 1). Since a ≡
−1 (mod b) and c ≡ a2 ≡ 1 (mod b), we see from
(1) that x must be even. Since b ≡ 3 (mod 4) and
c is odd, we see from a2 + b2l−1 = c that a is even
and c ≡ 3 (mod 4). Hence, by (1), we get y ≡ z

(mod 2). Further, since c ≡ 3 (mod 4), we conclude
that y ≡ z ≡ 1 (mod 2) by (1). It implies that y and
z are both odd. Hence, by Lemma 1, we may assume
that b is not a power of 3.

Since a ≡ −1 (mod b2l) and a2 + b2l−1 = c, we
have c ≡ 1 + b2l−1 (mod b2l). Hence, by (1), we get
1 + by ≡ 1 (mod b2l−1) and y ≥ 2l− 1. If y = 2l− 1,
then from (1) we get

(2) 1 + b2l−1 ≡ (1 + b2l−1)z (mod b2l),

whence we obtain

(3) z − 1 ≡ 0 (mod b).

Further, since y = 2l− 1 and (x, y, z) �= (2, 2l− 1, 1),
we have z > 1. Therefore, by (3), we get

(4) z − 1 ≥ b.

If y > 2l − 1, then from (1) we get

(5) 1 ≡ (1 + b2l−1)z (mod b2l).

It implies that z ≡ 0 (mod b) and

(6) z ≥ b.

Therefore, by (4), (6) holds for any case.
Since b > 3 and y is odd, we find from (1) that

(X, Y, Z) = (ax/2, b(y−1)/2z) is a solution of the equa-
tion

X2 + bY 2 = cZ, X, Y, Z ∈ Z,(7)

gcd(X, Y ) = 1, Z > 0.

Since c is odd, by Lemma 2, we obtain

(8) z = Z1t, t ∈ N,

ax/2 + b(y−1)/2
√−b = λ1(X1 + λ2Y1

√−b)t,(9)

λ1λ2 ∈ {1,−1},
where X1, Y1, Z1 are positive integers satisfying

X2
1 + bY 2

1 = cZ1 , gcd(X1, Y1) = 1,(10)

h(−4b) ≡ 0 (mod Z1).

Moreover, since z is odd, we see from (8) that t must
be odd.

Let

(11) α = X1 + Y1

√−b, β = X1 − Y1

√−b.
By (10) and (11), we have

α+ β = 2X1, αβ = cZ1 ,(12)
α

β
=

1
cZ1

(
(X2

1 − bY 2
1 ) + 2X1Y1

√−b).
Since gcd(X1, Y1) = gcd(b, c) = 1, we observe from
(12) that α+β and αβ are nonzero coprime integers
and α/β is not a root of unity. Hence, (α, β) is a Lu-
cas pair with parameters (2X1,−4bY 2

1 ). Further, let
Ls(α, β) (s = 0, 1, 2, · · ·) denote the corresponding
Lucas numbers. By (9) and (11), we get

(13) b(y−1)/2 = Y1|Lt(α, β)|.
We find from (13) that the Lucas number Lt(α, β)
has no primitive divisors. Therefore, by Lemma 5,
we get t ≤ 30. Further, it is easy to remove all cases
in Lemma 4 and conclude that t ≤ 4. So we have
t ∈ {1, 3}.

When t = 1, we get from (8) and (10) that
z = Z1 and h(−4b) ≡ 0 (mod z). It implies that
h(−4b) ≥ z. Further, by (6),

(14) h(−4b) ≥ b.

By Lemma 3, we see from (14) that

(15) b <
4
√
b

π
log(2e

√
b),

whence we conclude that b < 19. Recall that b ≡ 3
(mod 4) and b is not a power of 3. We have b ∈
{7, 11, 15}. But, (14) is impossible, since h(−4 · 7) =
1, h(−4 · 11) = 3 and h(−4 · 15) = 2.
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When t = 3, we get from (9) that

(16) b(y−1)/2 = λ1λ2Y1(3X2
1 − bY 2

1 ).

Let d = gcd(Y1, 3X2
1 − bY 2

1 ). Since gcd(X1, Y1) = 1,
we have d = 1 or 3. Notice that gcd(b, c) = 1 and
gcd(b, X1) = 1 by (10). If d = 1 and b is a power
of prime, then b �= a power of 3 and gcd(b, 3X2

1 −
bY 2

1 ) = 1. Hence, from (16) we get Y1 = b(y−1)/2

and

(17) 3X2
1 − by = 1,

since by ≡ 3 (mod 4). Recall that c ≡ 1 (mod b).
We get from (10) and (17) that X2

1 ≡ 1 (mod b) and
3X2

1 ≡ 1 (mod b), respectively. It implies that 3 ≡
1 (mod b), a contradiction. If d = 3, then 3 | b, by
(16). Since b is not a power of 3, b has at least two
distinct prime divisors. Therefore when d = 1 and
b �= a power of prime or d = 3, by the genus theory of
binary quadratic forms (see [4, Section 48]), we have
h(−4b) ≡ 0 (mod 2). Further, by (8) and (10), we
get z = 3Z1 and h(−4b) ≡ 0 (mod 2z/3). It follows
that

(18) h(−4b) ≥ 2
3
b,

by (6). Further, by Lemma 3, we obtain from (18)
that

(19)
2
3
b <

4
√
b

π
log(2e

√
b),

whence we conclude that b ≤ 51, since 3 | b for d = 3,
we have b ∈ {15, 35, 39, 51}. But, (18) is impossible,
since h(−4·15) = 2, h(−4·35) = 2, h(−4·39) = 4 and
h(−4 · 51) = 6. To sum up, the theorem is proved.
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