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Abstract:

We give a classification of C%-regular projectively Anosov flows on closed three

dimensional manifolds. More precisely, we show that if the manifold is connected then such a flow
must be either an Anosov flow or represented as a finite union of T? x I-models.
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1. Introduction. In [6], Eliashberg and
Thurston developed a theory of confoliations which
are mixture of foliations and contact structures on a
three dimensional manifold. One of the fundamental
results is that any foliation on a three dimensional
manifold except F = {S? x {*}} on $? x S* can
be perturbed into a positive (or negative) contact
structure as a plane field. They also introduced a
special class of perturbations, so called linear per-
turbations. A linear perturbation of a foliation gen-
erated by a plane field £ is a one parameter family
{Ker a¢}re(—e,e) of plane fields defined by a family
of 1-forms {a;} with & = Kerag and (d/dt)(az A
day) > 0. Eliashberg and Thurston observed that
if the kernel of 8 = (d/dt)a|t—0 is also a foliation,
then (Ker(a+t3), Ker(a —t3)) is a pair of mutually
transverse positive and negative contact structures
for any ¢ # 0. Independently, Mitsumatsu [10] also
studied the same deformation for Anosov foliations
and he called such a pair of contact structure a bi-
contact structure. Mitsumatsu, and Eliashberg and
Thurston observed that for any bi-contact structure
(&,m) the line field £ N7 generates a flow with a spe-
cial property, which is called a projectively Anosov
(or simply PA) flow (or a conformally Anosov flow
in [6]).

Similar to an Anosov flow, a PA flow preserves
two mutually transverse plane fields, which are called
the stable and unstable subbundles. When these
plane fields are smooth, we can define a linear de-
formation which gives a bi-contact structure. Unfor-
tunately, some PA flows preserve no smooth plane
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field. In this paper, we focus only on regular PA
flows, which admit the smooth stable and unstable
subbundles. They correspond to foliations which ad-
mits a linear deformation whose derivative generates
another foliation.

In [12], Noda gave a classification of regular PA
flows on a T2-bundle over S' having an invariant
torus. After that, he and Tsuboi gave a classifica-
tion for some manifolds, which can be summarized
as follows:

Theorem ([12-14], and [16]).
flow on a Seifert manifold or a T2-bundle over S'
must be either an Anosov flow or represented as a
finite union of T2 x I-models.

A T? x I-model is an explicitly described PA-
flow on T? x [0,1]. Roughly speaking, it is a flow

Any regular PA

transverse to T2 x {z} for any z € (0, 1) and is equiv-
alent to a linear flow on each boundary. See [12] for
details. Since Anosov flows with smooth invariant
foliations are classified by Ghys [7], it completes the
classification on the above manifolds. The author
also approached the classification problem from an-
other direction. In [2], it is shown that any regular
PA flow on any three dimensional closed manifold
without non-hyperbolic periodic orbits is equivalent
to one of the flows classified above.

In [13], Noda conjectured that there are no reg-
ular PA flows other than the ones classified above.
The aim of this paper is to show that the conjecture
is true. Namely,

Main Theorem. Any C%-regular PA flow on
a connected and closed three dimensional manifold
must be either an Anosov flow or represented as a
finite union of T2 x I models.
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An immediate corollary is an affirmative answer
to a conjecture posed by Mitsumatsu (Conjecture
4.3.3 in [11]).

Corollary 1.1.
ciated with a reqular PA flow consists of tight contact
structures.

Any bi-contact structure asso-

We give the precise definition of regular PA
flows and a sketch of the proof of the main theo-
rem in the next section. The detail of the proof will
appear in [3].

2. A sketch of the proof.

2.1. Definitions. First of all, we recall the
definition of regular PA flows.

Let M be a three dimensional closed manifold
and ® = {®'},cr a flow on M. Let TP denote the
one dimensional subbundle of T'M which is generated
by the vector field associated with ®. The differential
of @ induces a flow D® = {D®'},cr on TM/T®. A
pair (E*, E®) of continuous two dimensional subbun-
dles of TM is called a projectively Anosov (or simply
PA) splitting if

1. EYNE* =T3,

2. both K" and F* are ®-invariant, and

3. there exist two constants C' > 0 and A € (0,1)
such that

1D (/7@ ol | D2 | ra) ()| < CN

for any ¢ > 0 and z € M, where || - || is a norm

on TM/T®.

It is easy to see that the definition does not depend
on the choice of the norm || - || and the pair (E*, E*)
is uniquely determined if it exists. We call E* and
E? the unstable and the stable subbundles associated
with &.

We say a flow @ is projectively Anosov (or PA)
when it admits a PA splitting (E“, E¥). If both
E" and E® are (C"-)smooth, then ® is called a
(C"-)regular PA flow. In such a case, E* and E*
generate C" foliations which are called the unstable
and the stable foliations, respectively.

2.2. A dichotomy on dynamics. Now, we
give a sketch of the proof of the main theorem. Fix
a regular PA flow on a three dimensional connected
and closed manifold M. Let F° and F* be the sta-
ble and unstable foliations respectively. Let Per(®)
denote the set of all periodic point of ®.

The proof of the main theorem is divided into
two parts. First, we show the following dichotomy
on dynamics of ®.
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Proposition 2.1. Fither M = Per(®) or ® is
represented by a finite union of T2 x I-models.

Sketch of Proof. The proof is essentially the
same as in [2]. However, lack of hyperbolicity of
periodic orbits creates additional difficulties in the
proof.

By using a standard technique of local return
maps, we can apply the argument in the proof of
Proposition 3.1 of [15] and obtain the “Denjoy prop-
erty” for local return maps, which allows us to show
the following lemma:

Lemma 2.2. Let C' be a periodic orbit of ®
and W3 (C) the stable set of C. Take a leaf L of F*
and a connected component U of (LNW?#(C))\ C.
If U is not empty, then, with the leaf topology of L,
U is homeomorphic to S' x R and the boundary of
U consists of periodic orbits.

For a periodic orbit C' of @, let F*(C) and
F*(C) denote the leaves of F* and F* which con-
tain C. By the same argument as in [2], if F* has
contracting linear holonomy along the periodic point
C then W*(C) = F*(C) and it is homeomorphic to
S x R. By applying the level theory [4] and the sta-
bility theory of non-compact leaves [5] of Cantwell
and Conlon, we also obtain that W*(C) = F*(C)
or C' is contained in a ®-invariant torus consisting of
periodic orbits.

The “Denjoy property” of local return maps also
implies the existence of a local product structure on
Per(®). Therefore, we can apply the same argu-
ment as in [2], which completes the proof of Propo-
sition 2.1. |

By Proposition 2.1, we have only to show the
following.

Proposition 2.3. If M = Per(®), then O is
an Anosov flow.

Sketch of Proof. By a theorem of Arroyo and
Rodriguez Hertz [1, Theorem B], it is sufficient to
show that all periodic orbits are hyperbolic.

First, we consider the case that ® has a global
cross section My. Remark that M, is diffeomorphic
to T2, Let F : My — My be the global return map
of ®. We put E** = TMy N E" and E*° = T My N
E®. Let W#3(z) and W**(z) denote the stable and
unstable sets for a point z € T2. Since there exists a
local product structure on My, W*(z) and W"¥(z)
are leaves of the foliation generated by E*® and E"*
respectively and there exists a Markov partition for
F.
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