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A classification of three dimensional regular projectively Anosov flows
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Abstract: We give a classification of C2-regular projectively Anosov flows on closed three
dimensional manifolds. More precisely, we show that if the manifold is connected then such a flow
must be either an Anosov flow or represented as a finite union of T2 × I-models.
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1. Introduction. In [6], Eliashberg and
Thurston developed a theory of confoliations which
are mixture of foliations and contact structures on a
three dimensional manifold. One of the fundamental
results is that any foliation on a three dimensional
manifold except F = {S2 × {∗}} on S2 × S1 can
be perturbed into a positive (or negative) contact
structure as a plane field. They also introduced a
special class of perturbations, so called linear per-
turbations. A linear perturbation of a foliation gen-
erated by a plane field ξ is a one parameter family
{Kerαt}t∈(−ε,ε) of plane fields defined by a family
of 1-forms {αt} with ξ = Kerα0 and (d/dt)(αt ∧
dαt) > 0. Eliashberg and Thurston observed that
if the kernel of β = (d/dt)αt|t=0 is also a foliation,
then (Ker(α+ tβ),Ker(α− tβ)) is a pair of mutually
transverse positive and negative contact structures
for any t �= 0. Independently, Mitsumatsu [10] also
studied the same deformation for Anosov foliations
and he called such a pair of contact structure a bi-
contact structure. Mitsumatsu, and Eliashberg and
Thurston observed that for any bi-contact structure
(ξ, η) the line field ξ ∩ η generates a flow with a spe-
cial property, which is called a projectively Anosov
(or simply PA) flow (or a conformally Anosov flow
in [6]).

Similar to an Anosov flow, a PA flow preserves
two mutually transverse plane fields, which are called
the stable and unstable subbundles. When these
plane fields are smooth, we can define a linear de-
formation which gives a bi-contact structure. Unfor-
tunately, some PA flows preserve no smooth plane
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field. In this paper, we focus only on regular PA
flows, which admit the smooth stable and unstable
subbundles. They correspond to foliations which ad-
mits a linear deformation whose derivative generates
another foliation.

In [12], Noda gave a classification of regular PA
flows on a T2-bundle over S1 having an invariant
torus. After that, he and Tsuboi gave a classifica-
tion for some manifolds, which can be summarized
as follows:

Theorem ([12–14], and [16]). Any regular PA
flow on a Seifert manifold or a T2-bundle over S1

must be either an Anosov flow or represented as a
finite union of T2 × I-models.

A T2 × I-model is an explicitly described PA-
flow on T2 × [0, 1]. Roughly speaking, it is a flow
transverse to T2×{z} for any z ∈ (0, 1) and is equiv-
alent to a linear flow on each boundary. See [12] for
details. Since Anosov flows with smooth invariant
foliations are classified by Ghys [7], it completes the
classification on the above manifolds. The author
also approached the classification problem from an-
other direction. In [2], it is shown that any regular
PA flow on any three dimensional closed manifold
without non-hyperbolic periodic orbits is equivalent
to one of the flows classified above.

In [13], Noda conjectured that there are no reg-
ular PA flows other than the ones classified above.
The aim of this paper is to show that the conjecture
is true. Namely,

Main Theorem. Any C2-regular PA flow on
a connected and closed three dimensional manifold
must be either an Anosov flow or represented as a
finite union of T2 × I models.
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An immediate corollary is an affirmative answer
to a conjecture posed by Mitsumatsu (Conjecture
4.3.3 in [11]).

Corollary 1.1. Any bi-contact structure asso-
ciated with a regular PA flow consists of tight contact
structures.

We give the precise definition of regular PA
flows and a sketch of the proof of the main theo-
rem in the next section. The detail of the proof will
appear in [3].

2. A sketch of the proof.
2.1. Definitions. First of all, we recall the

definition of regular PA flows.
Let M be a three dimensional closed manifold

and Φ = {Φt}t∈R a flow on M . Let TΦ denote the
one dimensional subbundle of TM which is generated
by the vector field associated with Φ. The differential
of Φ induces a flow D̂Φ = {D̂Φt}t∈R on TM/TΦ. A
pair (Eu, Es) of continuous two dimensional subbun-
dles of TM is called a projectively Anosov (or simply
PA) splitting if

1. Eu ∩ Es = TΦ,
2. both Eu and Es are Φ-invariant, and
3. there exist two constants C > 0 and λ ∈ (0, 1)

such that

‖D̂Φ−t|(Eu/TΦ)(Φt(z))‖·‖D̂Φt|(Es/TΦ)(z)‖ ≤ Cλt

for any t > 0 and z ∈ M , where ‖ · ‖ is a norm
on TM/TΦ.

It is easy to see that the definition does not depend
on the choice of the norm ‖ · ‖ and the pair (Eu, Es)
is uniquely determined if it exists. We call Eu and
Es the unstable and the stable subbundles associated
with Φ.

We say a flow Φ is projectively Anosov (or PA)
when it admits a PA splitting (Eu, Es). If both
Eu and Es are (Cr-)smooth, then Φ is called a
(Cr-)regular PA flow. In such a case, Eu and Es

generate Cr foliations which are called the unstable
and the stable foliations, respectively.

2.2. A dichotomy on dynamics. Now, we
give a sketch of the proof of the main theorem. Fix
a regular PA flow on a three dimensional connected
and closed manifold M . Let Fs and Fu be the sta-
ble and unstable foliations respectively. Let Per(Φ)
denote the set of all periodic point of Φ.

The proof of the main theorem is divided into
two parts. First, we show the following dichotomy
on dynamics of Φ.

Proposition 2.1. Either M = Per(Φ) or Φ is
represented by a finite union of T2 × I-models.

Sketch of Proof. The proof is essentially the
same as in [2]. However, lack of hyperbolicity of
periodic orbits creates additional difficulties in the
proof.

By using a standard technique of local return
maps, we can apply the argument in the proof of
Proposition 3.1 of [15] and obtain the “Denjoy prop-
erty” for local return maps, which allows us to show
the following lemma:

Lemma 2.2. Let C be a periodic orbit of Φ
and W s(C) the stable set of C. Take a leaf L of Fs

and a connected component U of (L ∩W s(C)) \ C.
If U is not empty, then, with the leaf topology of L,
U is homeomorphic to S1 × R and the boundary of
U consists of periodic orbits.

For a periodic orbit C of Φ, let Fs(C) and
Fu(C) denote the leaves of Fs and Fu which con-
tain C. By the same argument as in [2], if Fs has
contracting linear holonomy along the periodic point
C then W s(C) = Fs(C) and it is homeomorphic to
S1×R. By applying the level theory [4] and the sta-
bility theory of non-compact leaves [5] of Cantwell
and Conlon, we also obtain that Wu(C) = Fu(C)
or C is contained in a Φ-invariant torus consisting of
periodic orbits.

The “Denjoy property” of local return maps also
implies the existence of a local product structure on
Per(Φ). Therefore, we can apply the same argu-
ment as in [2], which completes the proof of Propo-
sition 2.1.

By Proposition 2.1, we have only to show the
following.

Proposition 2.3. If M = Per(Φ), then Φ is
an Anosov flow.

Sketch of Proof. By a theorem of Arroyo and
Rodriguez Hertz [1, Theorem B], it is sufficient to
show that all periodic orbits are hyperbolic.

First, we consider the case that Φ has a global
cross section M0. Remark that M0 is diffeomorphic
to T2. Let F : M0 → M0 be the global return map
of Φ. We put Euu = TM0 ∩ Eu and Ess = TM0 ∩
Es. Let W ss(z) and Wuu(z) denote the stable and
unstable sets for a point z ∈ T2. Since there exists a
local product structure on M0, W ss(z) and Wuu(z)
are leaves of the foliation generated by Ess and Euu

respectively and there exists a Markov partition for
F .
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Fig. 1. The rectangle R.

Suppose p ∈ M0 is a non-hyperbolic periodic
point. Without loss of generality, we can assume
that p is a fixed point and ‖DF |Ess‖ = 1. By the ex-
istence of Markov partition, we can reduce F to a one
dimensional dynamical sy stem. A theorem of Mañé
[8, 9] implies that the number of non-hyperbolic peri-
odic orbits is finite. Take a hyperbolic periodic point
q close to p and a small rectangle R ⊂M0 as in Fig-
ure 1. For n ≥ 0 and z ∈ F n(R), let Is(z, n) be
the connected component of W s(z) ∩ F n(R) which
contains z. Notice that the existence of a Markov
partition implies that if we choose sufficiently small
R then {Is(z, n) | n ≥ 0, z ∈ F n(R)} is bounded by
a small number. By replacing F by its iteration, we
can assume that q is a fixed point.

For a C2 one dimensional map g : I → I′, we
define the distortion Dist(g) of g by

Dist(g) = sup{log |Dg(x)/Dg(x′)| | x, x′ ∈ I}.
Let hn : Is(p, n) → Is(q, n) be the holonomy
map of the foliation generated by Euu in F n(R).
Since the area of F n(R) is bounded by that of M0

and {Is(z, n)} is bounded by a small number, a
standard method of the theory of C2 codimension
one foliation implies that {Dist(hn)} is bounded.
By the hyperbolicity of fixed point q, we also ob-
tain that {Dist(F n|Is(q,0))} is bounded. On the
other hand, {Dist(F n|Is(p,0))} is unbounded since
‖DF n|Ess(p)‖ = 1 for any n ≥ 1 and the length of
F n(Is(p, 0)) goes to zero as n → ∞. It contradicts
hn ◦ (F n|Is(p,0)) = (F n|Is(q,0)) ◦ h0. Therefore, all
periodic points are hyperbolic if Φ has a global cross
section.

When Φ has no global cross section, we show
that there exist a time change Φ′ of Φ and a splitting
TM = TΦ′ ⊕Ess ⊕ Euu which is “invariant” under
Φ′ in some sense. For such a flow Φ′, we can apply
an argument similar to the above, which show that
Φ′ and Φ are Anosov flows.
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