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Abstract: We construct the absolute Frobenius operator as a matrix of infinite size for each
prime. We calculate the characteristic polynomial and the trace. We investigate the composition
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of two absolute Frobenius operators also.
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1. Introduction. For a prime number p, let

be an infinite matrix, where the number of copies of
the size n permutation matrix

is given by

Fip(n) = % S (%) p*

d|n

with the Mobius function p(n). This matrix f, is
obtained as the matrix representation of the Frobe-

nius automorphism Frob, acting on F,, where F,
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denotes the algebraic closure of the finite prime field
F,. Here Frob,(a) = a? for a € F,, so Frob, is seen
as an infinite permutation on F_p In the words of
[KOW], Frob, acts on the Fi-vector space F,, and
the matrix representation f,, of Frob, is given via

AutFl (F;D) = GLOO(FI) = Soo — GLOO(Z)

Thus, f, respects only the combinatorial structure,
so f, acts on any countable infinite set. Hence we
consider f, as the absolute Frobenius operator. We
refer to [Kurl, Kur2, M, KK1-KK3, KOW, KW1,
KW3, S, Dei] for absolute arithmetic related to this
theme; especially we calculated the zeta function as-
sociated to the absolute tensor product of several fi-
nite prime fields in [Kurl, KK2, KK3, KW1], and we
studied [0y, 04] = 9,0, —30,0, for absolute derivations
0p and 9, in [KOW].

In this paper we study basic properties of f,.
First using the calculation of the zeta function of
F,[T] (or SpecF,[T]) due to Kornblum [Kor] we
have the characteristic polynomial. For the descrip-
tion we introduce an infinite determinant det,(A)
as follows: We say that an infinite matrix A =
(a(m,n))m,n>1 is virtually diagonal if there exists a
sequence of finite matrices A,, of size x(n) such that
A = diag(Aq, As,...). In this situation, we define

det, (A) = ﬁ det(A,,)

when the infinite product converges.

Theorem 1.
have

For a prime p and m > 1, we

dety, (1—f£"t) =1—p™t.
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Theorem 2. Let

Z(s)=[[ (1 —£p~*) "

p
=14+ 27°5 4 3375 42475 4 f55°°
+ fof36™° +£,77° + - -

with the usual ordering on p. Then:
(1) Z(s) converges componentwise absolutely in
Re(s) > 1

0 *
(3) det Z(s) =¢(s—1).
Now we look at the trace. We define the trace
of an infinite matrix A = (a(m, n))m n>1 as

(o)
trace(A4) = Z a(n,n

when this infinite sum converges.
Theorem 3. For a prime p and m > 1,

trace(f)") = p™

Theorem 4. Let p and q be distinct primes.
Then:
(1) min{p, ¢} < trace(f,f,) < max{p?, ¢*}.
(2) trace(fyf,) = trace(f,f,).
(3) trace ([f,,£y]) =0 for [fp, f,] = £,£, — £,£,.

This shows that the non-commutativity betwen
f, and £, is not detected by the trace. Now we in-
troduce the weighted trace. For a complex number s
and an infinite matrix A = (a (m 1))m.n>1 we define

o

trace 5 Z

which is considered as a zeta function. We remark
that formally

(oo}
trace_1(A) = Z n-a(n,n)
n=1
is indicating a Casimir energy (see [KW2, KW3]).
For example, in the case of A = 1, the infinite unit
matrix,

o

traces(1) = Z % =((s)

is the Riemann zeta function, and

1
trace_1(1) = T

[Vol. 80(A),

is the usual Casimir energy.

Theorem 5. For distinct primes p and q,
traces([fp, fy]) is non-zero in general. For example:
(1) trace_1([f2, f3]) = —2.

(2) trace_q1([f2, f5]) = —5.
(3) trace_1([fs, f5]) = —5.

This would indicate that the Casimir energy ma-

trix

R_1 = (trace_1([fp, f5]))p.q: primes

is an interesting skew symmetric infinite matrix. We
hope to return to this theme on another opportunity.

2. Proof of Theorem 1. From Kornblum
[Kor] we have

(2.1) det,@p(l —ft) =1—pt.
In fact
o0
dety, (1 —f,t) = J] (1 — 7)™
(22) n=1
= 1—‘pﬁ

where the last equality (2.2) comes from the formula
1 ny 4
2 (g)r
d|n

(2.3)

Actually, from

oo (o)
log ( H(l "1’(")> Z n)log(l —t™)
n=1 n=1
i > /@p n)

and
> 1
log(1 — —
T S
m=1
we see that the equality
(oo}
[T =ty =1—pt
n=1

is equivalent to

E nmp

nlm

(2.4) =p™ forall m>1.

Then, the Mo6bius inversion formula shows the equiv-
alence between (2.3) and (2.4).
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We notice that Dedekind [Ded] obtained the for-
mula (2.3) for x,(n) as the number of the monic ir-
reducible polynomials in F,[T] of degree n. In other
words, this means that the space F, has k,(n) orbits
of length n under the action of Frob,.
sponds to

This corre-

¢(s,SpecF,[T]) = (1 —p' %)~ 1.

Now, we calculate det,, (1 — f;”t). A direct way

is to notice that Kornblum’s formula (2.1) implies
det,, (1 — £,Ct) = 1 — pCt

for (" = 1. Then

det,, (1 —£7t™) = det,, ( ITa- f,,gt))

¢m=1
= J[ dets, (@1 —£,¢t)
¢m=1
= I a—nct)
¢m=1
=1- pmtma
and we replace t™ by t. Ol
3. Proof of Theorem 2.

(1) Let

:iFn
n=1

Then, each F(n) is an infinite permutation matrix.
Hence matrix components of F(n) are 1 or 0. This
shows that Z(s) converges componentwise absolutely
in Re(s) > 1.

(2) The matrix components of F(n) at
(1,2), (2,1),
forward way.

(1,1),

(2,2) are calculated in a straight-

(3) Theorem 1 implies

det(Z H det,, (1 %) -t

]
4. Proof of Theorem 3. Notice that

S

trace(f)") Jtrace(Z,")

with

trace(Z,")

{ n if n|m,

0 otherwise.
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Thus
trace(f,") Zm@p
nlm
where we used (2.4). U
5. Proof of Theorem 4.
(1) We denote by fpf,(n,n) the (n,n)-

component of the infinite permutation matrix f,f;.
We show first that

f.f,(n,n) =0 if n> max{p?, ¢*}.

Suppose that £,£,(N, N) = 1. Denote by f,(m,n)
and f,(m,n) the (m,n)-component of f, and f; re-

spectively. Then
N) =Y £,(N,n)fy(n, N).
n

Write

k—
(5.1) Z

with & > 1,1 <1 < kp(k), and 1 < m < k. This
means that the N-th row of f,, coincides with the m-

th row of the [-th matrix Zj of size k appearing in
f,. Then f,(N,n) =1 only for

+(=Dk+m

(5.2) N_Z]Kp + (I =Dk+ (m+ 1),
where
1 if =1,....k—-1
(mt 1= T BT e
1 if m=k%.

Hence it must be f,(n, N) = 1 for this n. Writing

k'—1

n = Z ]K,q(]) + ll
j=1

with ¥ > 1, 1 < ' < go(k'), and 1 < m’ < ¥
similarly to (5.1), we have

(5.3) DE +m/

k'—1

N = Zm(j) + (' =1k +

as in (5.2). Hence, from (5.1)—(5.4) we get
(5.5) m—

(5.4) (m + 1)

(m+1)g=N-n=(m + 1) —m'

To treat (5.5), we divide into four cases: (a) m = k,
m =k, b)m=%km £k, (c)m#k m =F,
(d) m # k, m' # k. In the case (a) we have k —
1=1-k,s0oweget k=FkK =1, hence N < p,q.
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In the case (b) we have k —1 =1, so k = 2, and
N < p?. In the case (c) we have —1 = 1 — &/, so
k' =2, and N < ¢ The case (d) does not occur
since the condition (5.5) implies —1 = 1 in this case.
Thus, we get N < max{p?, ¢*}. So, f,f,(n,n) =0 if
n > max{p?, ¢*}. Hence
trace(f,f,) < max{p?, ¢*}.
The inequality
trace(f,f,) > min{p, ¢}

is obvious.

(2) Here, it is convenient to use the permuta-
tional description. We denote by f, € So the per-
mutation corresponding to f,. In other words f, is
the matrix representation of f:

f, = (6mfp("))m7n21 :
Then we get

trace(f,f,) = #Fix(f,f;)

and

trace(f,f,) = #Fix(f, ),
where
Fix(c) ={n=1,2,3,...| o(n) = n}
for 0 € S. Hence it is sufficient to show

#Fix(fpfq) = #Fix(fofp),
and we see this equality from the bijection
Fix(f, fq) — Fix(fyfp) given by n +— fp_l(n)
(3) This follows from (2). Ul
6. Proofof Theorem 5.
tained from direct calculations as follows:

(1)

The results are ob-

traces (f2f3) = 1+27°+67° 4+ 877,
traces (f3f2) = 1+27°+77°497%,
traces ([f2,f5]) =67 —77° +87° — 977

(2)
traces (fof5) = 1+27°+67°+127°+167°
+207% 4247,
traces (f5f2) = 1+27°+ 77+ 137+ 1777
£ 2175 42570,

traces ([f2,f5]) =67°—77° +127° - 137°
L1675 — 1775 4+207° —21°°
+247°% —257°

[Vol. 80(A),

(3)

traces (f3f5) = 1+27°4+37°4+67°+7°°
+8°+9°4+107°+147°
+167°+207° +227°,

traces (f5f3) = 1+27°4+37°4+6 "+ 7°
+8°+9 4117 °+157°
+ 177542175 +237%,

traces ([f3,f5]) =107° —117°4147° - 157°

+167°—17"°4207°—-21"°
+227° — 2375,

We notice that the permutational description f,
is more comfortable for these calculations. ]
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