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On a holomorphic curve extremal for the defect relation

By Nobushige Topa*

Professor Emeritus, Nagoya Institute of Technology
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Abstract: Let f be a transcendental holomorphic curve from the complex plane into the
two dimensional complex projective space of which defect relation over a set X in N-subgeneral
position is extremal. Then, there are N — 1 vectors in X whose deficiency with respect to f is

equal to 1.
Key words:

1. Introduction. Let f = [f1,..., fnt1] be
a holomorphic curve from C' into the n-dimensional
complex projective space P™(C') with a reduced rep-
resentation

(fi,--

where n is a positive integer. We use the following

oy fap1) : € — C"T— {0},

notations:

IF = (f1(2)P + -+ | frra (2)]P)1/2
ani1) € C"T— {0}
lall = (Jax]* + - - - + [ans1|*) /2,
(a, f(2)) = a1 fi(2) + -+ ant1fat1(2),
(aa f) = alfl +--+ an+1fn+1-

The characteristic function T'(r, f) of f is de-
fined as follows (see [10]):

and for a vector a = (a1, ..

1 27 i
T f) = 5= [ 1os e~ tog L 70)]

We suppose throughout the paper that f is tran-
scendental: lim, o, T(r, f)/logr = oo and that f is
linearly non-degenerate over C; namely, f1, ..., fo+1
are linearly independent over C.

For meromorphic functions in the complex plane
we use the standard notations of the Nevanlinna the-
ory of meromorphic functions ([4, 5]).

For a € C™* — {0}, we write

Ll )]
%/ 18 (@, s{rainy)|

N(Taaaf):N(T’l/(aaf))'
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m(r,a, ) =

Holomorphic curve; defect relation; extremal; subgeneral position.

We call the quantity

N(r,a, f) fm(r, a, f)
T(r, f) T(r, )
the deficiency of a with respect to f. It is known

that 0 < d(a, f) < 1.

Let X be asubset of C"**—{0} in N-subgeneral
position; that is to say,

(i) #X > 2N —n+2 and

(ii) any N + 1 elements of X generate C"*,
where N is an integer satisfying N > n.

Cartan ([1], N = n) and Nochka ([6], N > n)
gave the following

Theorem A (Defect Relation).
ements a1, ...,aq of X

= limin
r—00

d(a, f) =1—limsup

T—00

For any q el-

daj, f) <2N —n+1
j=1
(2N —n+1< g < o0) (see also [2] or [3]).
We are interested in the holomorphic curve f
extremal for the defect relation:

(1) > d(a;. f)=2N—n+1.

In [9] we proved the following theorem.

Theorem B. Suppose that there are wectors
ai,...,aq in X such that (1) holds, where 2N —n +
1 <qg<oo. If N >mn and n is even, then there
are at least [(2N —n+1)/(n+ 1)] + 1 vectors a €
{a1,...,aq} satisfying §(a, ) = 1.

The purpose of this paper is to improve Theo-
rem B when n = 2:

Theorem. Suppose that N > n = 2 and that
there are vectors az, . . .,aq in X such that (1) holds,
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where 2N —1 < g < co. Then there are at least N —1
vectors a € {aq,...,a,} satisfying é(a, f) = 1.

2. Preliminaries. We shall give some lem-
mas in this section for later use. Let f =
[f1s--., fa+1], X etc. be as in Section 1, ¢ any in-
teger satisfying 2N —n + 1 < ¢ < oo and we put
Q={12,...,q}.

Let {a; | j € Q} be a family of vectors in X.
For a non-empty subset P of @, we denote

V(P) = the vector space spanned by {a; | j € P},
d(P) = dim V(P)

and we put O ={PCQ|0<#P<N+1}.

Lemma 2.1 ((2.4.3) in [3, p.68]). For P € O,
4P —d(P)< N —n.

Lemma 2.2 ([9, Proposition 10 (II)]). Sup-
pose that there exists a function T : Q — (0, 1] which
satisfies the following condition (x):

(x) Forany P €O, ;.p7(j) <d(P).

Then, for vectors ai,...,a, € X, we have the
inequality:

T(j)o(a;, f) <n+1.

q
=1

J

3. Theorem. From now on throughout this
paper we suppose that N > n = 2. Then, the holo-
morphic curve f = [f1, fa, f3] is transcendental from
C into the two dimensional projective space P?(C),
X is a subset of C® — {0} in N-subgeneral position.

From Theorem A it is easy to see that the set
{a € X |é(a, f) > 0} is at most countable and

> da, f)<2N -1
aex

We call this inequality the defect relation of f
over X.

(A) First we consider the extremal holomor-
phic curve f with a finite number of vectors a €
X satisfying d(a, f) > 0.

Suppose that there are vectors a, ..
satsfying

a4 in X

(2) > d(a;, f) =2N -1,

q
)

j
where 2N — 1 < ¢ < o0.

As in Section 2, we put Q = {1,2,...,¢}, for a
non-empty subset P of @, V(P) is the vector space
spanned by {a; | j € P}, d(P) = dimV(P) and
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weput O ={PCQ|0<#P <N +1}.

Definition 3.1 ([8, Definition 1]). We put

A = min d(P)/#P.

Proposition 3.1. 1/(N-1) <\ < 3/(2N-1).

In fact, we obtain the first inequality from [8,
Proposition 2] for n = 2 and the second one from [9,
p.295] for n = 2.

Let Py be an element of O satisfying
d(Py)/#Py = A. Then, we have the following

Proposition 3.2. d(Py)=1 and #Py < N—1.

Proof. As Py # ¢, d(Py) > 1. By Proposi-
tion 3.1 and Lemma 2.1, we have the inequality

d(PQ) < #PQ < (N—2+d(P0)),

3
2N —1 2N —1
so that we have d(Pp) < 3/2, which means that
d(Py) = 1. This implies that #Py < N — 1 by
Lemma 2.1. |

Proposition 3.3 ([9, Remark 1, Theorem 1]).
For j € Py, d(a;, f) = 1.

To prove our theorem when ¢ is finite, we have
only to prove that #FPy = N — 1 by Proposition 3.3.
Let #Py = N—x+1. Then, x > 2 by Proposition 3.2
and

. d(P)  d(Py) 1
A = min = = .
PeO #P #P, N-—-z+1
Proposition 3.4. z < (N +4)/3.

Proof. As A < 3/(2N — 1) by Proposition 3.1,
we have the inequality

1/(N—z+41) <3/(2N —1),

which reduces to = < (N +4)/3. U

Proposition 3.5. Let P O. IfPC Q\ P
and #P > x, then d(P) > 2 and d(P U Py) = 3.

Proof. As X is in N-subgeneral position and
#(PyUP) > N+ 1, we have that d(PyU P) = 3.
Further as d(Pp) = 1, we have that d(P) > 2. Ul

Proposition 3.6. Let P € O. If P\ Py # ¢
and PN Py # ¢, then d(P)/#P > 2/N.

Proof. First, we prove that d(P) > 2. Suppose
to the contrary that d(P) =1. Then d(PyUP) =1
because PN Py # ¢ and d(FPy) = 1. Further, we have
that

N-z+1<#(PUP)<N-1
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since #Pp = N —xz+ 1, P\ Py # ¢, d(PoU P) =
1 and X is in N-subgeneral positon. We then have
that PpU P € O and

d(PyU P)/#(PoUP) < 1/(N —z + 1) = A,

which contradicts the definition of \. We have that
d(P) > 2.

When d(P) = 2, we have that #P < N and
d(P)/4P > 2/N.

When d(P) =3, d(P)/#P >3/(N+1) >2/N
since #P < N + 1. |

Proposition 3.7. Let P € O. If PN Py = ¢,
then d(P)/#P > 2/N.

Proof. (1) When d(P) = 1, #P < 2 — 1 by
Proposition 3.5 since if #P > z, then d(P) > 2. In
this case we have the inequality

ap) 1 1 3

e =y > —

4P  H#P 7z -1 N+1
by Proposition 3.4.

(i) When d(P) > 2, we have the inequality
d(P)/#P > 2/N as in Proposition 3.6.

As 3/(N +1) > 2/N, we have this proposition
from (i) and (ii). Ul

Remark 3.1. We note that P\ Py # ¢ in
Proposition 3.7.

Definition 3.2. We put
d(P
O, ={PcO|P\P,#¢} and )\1:;21&%.
Remark 3.2. \; > 2/N by Propositions 3.6
and 3.7.

Proposition 3.8. X\ < \;.

Proof. By Remark 3.2, we have the inequality
2 1 N —2x+2
'S N O N-—z+1 NWN-z+1)

since N > 3 and (N 4+ 2)/2 > (N +4)/3 > z by

Proposition 3.4. |
Definition 3.3. We put
o(j) = A (e )
M (JEQN\Py).

Note that 0 < o(j) < 1 (j € Q) from Defini-
tions 3.1, 3.2 and 3.3.
Proposition 3.9. For any P € O, we have

the inequality >, po(j) < d(P).

Proof. (1) When P C Py,
S 0(j) = MEP < %#P —d(P).

JjEP
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(i) When P\ Py # ¢,

d(P
3 o(j) < M#P < AP) yp _ gp).
; #P
jep
Ol
Proposition 3.10. Y 7_, o(j)d(ay, f) < 3.
Proof. We obtain this inequality from Propo-
sition 3.9 and Lemma 2.2 for n = 2. |
#Py=N —1.
Proof. From Proposition 3.10 we have the in-
equality
B > ol N+ Y. oli)ila,, f) <3
Jj€Ry JEQ\Po
As §(a;, f) =1 (j € Py) (Proposition 3.3), from (3)
we have the inequality

1
N—-—z+1

Proposition 3.11.

(N—z+1)+ > o(j)d(ay f) <3.
JEQ\Po

Aso(j) =M >2/N (j € Q\ Py) (Remark 3.2), we
have the inequality

% Z 6(ajaf)§2; or Z 5(aj,f)§N.

JEQ\Po JEQ\Po

On the other hand, from (2) we have the equality

> da;, f)=2N-1—(N—-z+1)
JEQ\Po =N+z-2
so that we have N+ — 2 < N or z < 2, which
means that #Py =N —x+1> N — 1.
Combining this with Proposition 3.2, we have
that #Py = N — 1. |
(B) Next, we consider the extremal holomor-

phic curve f with an infinite number of vectors a; €
X such that d(a;, f) >0 and

ié(aj, f) =2N —1.
j=1

Let

N ={1,2,3,...} (the set of positive integers),
Y ={a;|je N},
Ow={PCN|0O<#P <N+1}
and for any subset P of IN, we use the notations

V(P) and d(P) as in Section 2.

Definition 3.4 ([8, p. 144]). We put

p= min d(P)/#P.
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Note that the set {d(P)/#P | P € Oy} is a
finite set.

Proposition 3.1’. 1/(N—1) < u<3/(2N-1).

In fact, we have the first inequality from [8,
p.144] for n = 2 and the second one from [9, pp.
298-299] for n = 2.

Let Py be an element of O satisfying u =
d(Py)/#Py. As in the case of Proposition 3.2, we
have the following

Proposition 3.2’. d(Py)=1 and #Py < N—1.

Further we have the following

Proposition 3.3’ ([9, Proof of Theorem 2, pp.
299-300]). For j € Py, §(aj, f) =1.

To prove our theorm when ¢ is infinite, we have
only to prove that #Py = N — 1 by Proposition 3.3’.
Let #Py = N—x+1. Then, x > 2 by Proposition 3.2’
and

d(P) d(Po) 1

H=pesl %P ~ %Py N—-z+1

Remark 3.3. As in the case (A), we obtain
the same propositions as in Propositions 3.4, 3.5, 3.6

and 3.7 for P, in this case.

For any positive number 0 < € < 1, we choose
an integer ¢ satisfying Q = {1,2,...,9} D Po, ¢ >
2N —1 and

q
(4) AN —1—e< Y d(ay, f).
j=1
Weput P={PCQ|0<#P<N+1}.
Note that p = minpep d(P)/#P since P 3 P
and = d(Po) /#P%.

Definition 3.5. We put

Note that Py # ¢ since #@Q > 2N — 1 and
#Py < N —1.

Remark 3.4. p; > 2/N as in Remark 3.2.

As in the case of Proposition 3.8, we have the
following

Proposition 3.8". pu < ;.
Definition 3.6. We put

(=gt U
m (J€Q\ P).

From Definitions 3.4, 3.5 and 3.6, we have that
7:Q — (0,1]. As in the case of Proposition 3.9, we
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have the following

Proposition 3.9’. For any P € P, we have
the inequality >, p7(j) < d(P).

By using this proposition, we have the following
proposition as in Proposition 3.10:

_(]1’:1 T(j)5(a’ja f) S 3.
Finally, we obtain the following proposition cor-
responding to Proposition 3.11.

#Py=N—1.
Proof. From Proposition 3.10" we have the in-
equality

5) Y (s, N+ D T()dlay f) <3,

jeko JEQ\Po

Proposition 3.10’.

Proposition 3.11’.

As d(aj, f) =1 (j € Py) (Proposition 3.3'), from (5)
we have the inequality
1

¥ oW e+ Y T()ias, /) <3

JEQ\ Py
As 7(j) =p1 > 2/N (j € Q\ Po) (Remark 3.4), we
have the inequality

% Z 6(ajaf)§2; or Z 5(aj,f)§N.

JEQ\Po JEQ\ Py

On the other hand, from (4) we have the in-
equality

> dajf)>2N-1-€e—(N-z+1)
JEQ\Fo =N+a—2—¢

so that we have N +x —2 —e < Norx < 2 + €.
This means that #FPp =N —x+1> N —1—¢, and
so we have that #FPy > N —1 as P, is an integer and
0 < € < 1. Combining this with Proposition 3.2" we
have this proposition. |

Summarizing the results obtained in this section
we have our Theorem:

Theorem 3.1.
there are vectors a; (j =1,...
q < o0) satisfying

Suppose that N > 2 and that
,q) € X 2N -1<

daj, f)=2N —1.
j=1
Then, there exists a subset Py of {1,2,...,q}
such that
(i) d(Py) =1 and #Py =N — 1;
(ii) d(aj, f) =1 for j € P.
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4. Example. Let f, X and N > n =2 be as
in Section 3. Theorem 3.1 implies that for f to be
extremal for the defect relation it is necessary that
there exists a subset Sy of X satisfying

(6) #So=N—-1 and d(S) =1,

where d(Sp) is the dimension of the vector space
spanned by the elements of 5.

This shows that if X does not have any subset
satisfying (6), any transcendental holomorphic curve
is not extremal for the defect relation over X. In
this section, we shall give an example of f and X
which satisfy Theorem 3.1 and an example of maz-
imal subset of C® — {0} in N-subgeneral position
having no subset satisfying (6). We use eq, ez, e3 as
the standard basis of C°.

Example 4.1. Let f; = [e*,2,1]. For N > 2
we put
X1 ={a1,...,aon_1}
U{(a*a,1)|ac C,a#0,1,...,N —2},
where
a; =je; (1<j<N-—-1)
an+k = kea+es (0<k<N-—2);

asN—-1 = €2.

Then, f; is transcendental; X; is in N-subgeneral
position and the defect relation of f; over X is ex-
tremal.

Proof. The characteristic function T'(r, f1) sat-
isfies the inequality

(7)) r/m+0Q) <T(r f1) <r/m+logr+ O(1)

by [7, Lemme 1] and [4, pp. 6-7]. This implies that
f1 is transcendental. By the definition we have the
estimates

N(Taajafl)
_J)0 (G=1,...,N);
" \logr+0(1) (j=N+1,....2N - 1),
and so from (7) we obtain that

5(aj,f1):1 (j=1,...,2N—1).

It is easy to see that X3 is in N-subgeneral po-
sition, and so by Theorem A §(a, f1) = 0 for a €
X1 —{ai,...,azn—_1} and we have the equality

> da, f)=2N-1.

acX,
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Definition 4.1. We say that X is maximal if
for any W in N-subgeneral position such that

X cwcc®-{o},

We consider the following subset X» of C*—{0}.
Example 4.2. We put

then W = X.

Xg:{jel|j:1,...,N—2}
U{es, 2e2} U{k(a® a,1) |ac Cik=1,2}.

Proposition 4.1.
subgeneral position.

Proof. Let S be any subset of X5 such that
#S = N + 1. We have only to prove that there are
three elements in S which are linearly independent.

If N > 6, Xo is in N-

(a) The case when S contains at least one jie;
(1<j1 <N-2)and aey (o« =1 or 2).

S must contain a vector k(a?,a,1) (k=1 or 2;
a € C). Then it is easy to see that three vectors
jie1, aez and k(a?,a,1) are linearly independent.

(b) The case when S contains jie; (1 < j; <
N — 2), but does not contain aes (o =1,2).

S must contain two vectors

ki1(ai,a1,1), ko(a3,az, 1)

(k1,ke =1 or 2;a1 #ag € C).

Then, three vectors jier, ki(a?,a1,1), ka(a3,az,1)
are linearly independent.

(¢) The case when S does not contain any one
of {jer |j=1,...,N —2}.

As N > 6, S must contain the following three
vectors:

kl(a%aalal)a kQ(a%aGQal)a k3(a§aa3al)a

where k1, ko, k3 = 1 or 2 and aq, as and ag are dis-
tinct complex numbers. Then, these three vectors
are linearly independent.

From (a), (b) and (c), S contains three indepen-
dent vectors. This means that X5 is in N-subgeneral
position. O

Remark 4.1. It is easy to see that X5 is not
in N — 1 subgeneral position as N vectors {je; |
j=1,...,N — 2} U{ez,2e2} do not contain three
independent vectors.

If N > 6, X5 is maximal.

Proof. We have only to prove that for any vec-
tor (a, B,7) € c? - {0} not belonging to Xo, the set
XoU{(a, 8,7)} is not in N-subgeneral position.

(a) The case when v = 0. It is easy to see that
N + 1 vectors

Proposition 4.2.
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e1,2ey, ..., (N —2)ey,es, 2es, (o, 5,0)
do not contain three independent vectors. [1]

(b) The case when v # 0. Put 3/y = a. Then,
it is easy to see that IV 4 1 vectors (2]
e1,2e,...,(N —2)ey, (a% a,1),2(a? a,1), (o, 3,7)
do not contain three independent vectors. [3]

From (a) and (b) we have that Xs U {(a, 3,7)}
is not in N-subgeneral position. Ol

Theorem 4.1. If N > 6, for any transcen-
dental holomorphic curve f from C into P?(C), the [4]
defect relation of f over X5 is not extremal.

Proof. Suppose that there exists a transcen- [5]
dental holomorphic curve f from C into P?(C) sat-
isfying

[6]
Z §(a, f) =2N —1.
aex: 7]

Then, by Theorem 3.1, there must exist N — 1
vectors aq,...,any_1 in Xo such that

(i) the vector space spanned by a1, ...,an_1 is (8]
of dimension 1 and

(i) 8(aj, f)=1(G=1,...,N—1).

But, X5 does not contain N—1 vectors satisfying [ 9 ]
(1). This is a contradiction. We have our theorem.

Ol
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