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Computable sequences in the Sobolev spaces

By Shoki Miyamoto∗) and Atsushi Yoshikawa∗∗)

(Communicated by Shigefumi Mori, m. j. a., March 12, 2004)

Abstract: Pour-El and Richards [5] discussed computable smooth functions with non-
computable first derivatives. We show that a similar result holds in the case of Sobolev spaces by
giving a non-computable H1(0, 1)-element which, however, is computable in any of larger Sobolev
spaces Hs(0, 1) for any computable s, 0 ≤ s < 1.
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1. Introduction. Let Ω be an open set in
a d-dimensional Euclidean space Rd. The Sobolev
space Hm(Ω) of order m, (m = 0, 1, 2, · · ·), over Ω
is a Hilbert space consisting of the Lebesgue mea-
surable (complex valued) functions u(x) such that it
and all of its weak derivatives up to order m inclusive
are square summable over Ω. The inner-product of
Hm(Ω) is given by

(u , v)m =
∑

|α|≤m

∫
Ω

∂α u(x) · ∂α v(x) dx,

for u, v ∈ Hm(Ω). Here α = (α1, · · · , αd) ∈ Nn are
multi-indices. Thus, the length of α is |α| = α1 +
· · · + αd. Recall also ∂α = ∂α1

1 · · ·∂αd

d for a partial
derivation of order α. Recall ‖u‖m =

√
(u, u)m de-

fines the norm of u ∈ Hm(Ω). In particular, the
Sobolev space of order 0, H0(Ω), coincides with the
Lebesgue space L2(Ω) of the square summable func-
tions. For these function spaces, see any standard
textbook of partial differential equations or func-
tional analysis. See, e.g., Adams [1], also Hörmander
[4]. The computability notion in a separable Hilbert
space is discussed in Pour-El and Richards [5]. Com-
putablity properties of the Sobolev spaces are dis-
cussed in Zhong [7] for the case Ω = Rd.

The inclusion relation

(1) Hm(Ω) ⊂ Hl(Ω), m > l ≥ 0,

is clear from the definition. (1) means that the
canonical injection
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(2) Hm(Ω) � u �→ u ∈ Hl(Ω), m > l ≥ 0

is continuous.
It is a classical fact that if Ω has a nice (C∞)

boundary ∂Ω, then
⋂∞

�=0 Hl(Ω)(⊂ C∞(Ω)) is dense
in each of Hm(Ω). Actually, the set spanned by the
C∞ functions supported in closed disks intersecting
with Ω, centered at rational points and with rational
radii, is contained in

⋂∞
�=0 Hl(Ω) and dense in each

Hm(Ω). Note then that we have a common effective
generating set for all the Hm(Ω) consisting of ratio-
nal dilations and translations of a fixed C∞ function
supported in the unit disk (as the one analogous to
ϕ(t) given below). Thus, by the First Main The-
orem of Pour-El and Richards [5], the injection (2)
preserves computability. In particular, in the present
context, if u is computable in Hm(Ω), then so is it
in H�(Ω), m > � ≥ 0.

However, the mapping (2) also maps non-
computable elements in smaller spaces Hm(Ω) to
computable elements in larger spaces H�(Ω). Similar
phenomena have been observed for computability in
the standard sense of Turing/Lacombe/Grzegorczyk:
There is a computable function f (on the real line R),
which is continuously differentiable, but with non-
computable derivative f ′ (See [5]).

Modifying the related arguments in [5], we get,
in fact, an example of a computable sequence of ele-
ments which is non-effectively convergent in Hm(Ω),
in both of the weak and strong topologies, and which,
nevertheless, converges effectively in any of larger
spaces Hl(Ω), m > l ≥ 0.

2. A counterexample. To verify our state-
ment in the last lines of §1, we argue for the case
d = 1 and Ω = (0, 1), the unit open interval.

Proposition 2.1. Let d = 1 and Ω = (0, 1).
There is a bounded sequence {un(x)} ⊂ H1(0, 1)
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which converges to an element u(x) effectively in
H0(0, 1) but non-effectively in H1(0, 1).

Note that the limit u(x) ∈ H0(0, 1) actually be-
longs to H1(0, 1) because of weak compactness. In
fact, we can then extract a subsequence of {un(x)}
which converges weakly to some element ũ(x) in
H1(0, 1). By Rellich’s theorem, this subsequence
converges to ũ(x) in H0(0, 1). However, the sub-
sequence already converges to u(x) in H0(0, 1), and
thus ũ(x) = u(x).

To achieve the proof of the proposition, we
adopt the idea of Pour-El and Richards [5], Chap-
ter 1 §1 (p.52). Let

ϕ(t) =




exp
(
− t2

1− t2

)
, |t| < 1

0, |t| ≥ 1
.

ϕ(t) is a non-negative C∞ even function and its sup-
port is the closed interval [−1, 1].

Let a : N → N be a one-to-one recursive func-
tion which enumerates a recursively enumerable non-
recursive set A. We may assume 0 	∈ A or a(n) > 0
for all n. Now put

(3) ϕn(x) = ϕ
(
2(n+a(n)+2) (x − 2−a(n))

)
.

Each ϕn(x) is supported on a closed subinterval[
2−a(n) − 2−(n+a(n)+2), 2−a(n) + 2−(n+a(n)+2)

]
of (0, 1). ϕn(x) and ϕn′(x) have disjoint supports
for n 	= n′. For, we may assume without loss of
generality that a(n) < a(n′) = a(n) + k for some
k ≥ 1. Then disjointness of the supports of ϕn(x)
and ϕn′(x) reduces to positivity of the difference(

2−a(n) − 2−(n+a(n)+2)
)

− (
2−a(n′) + 2−(n′+a(n′)+2)

)
= 2−(a(n′)+2)

(
2k+2 − 2k−n − 22 − 2−n′)

.

However,

2k+2 − 2k−n − 22 − 2−n′ ≥ 3 · 2k − 5 > 0

since n, n′ ≥ 0 and k ≥ 1.
The L2-norms of ϕn(x) and its derivative ϕ′

n(x)
are given by

‖ϕn‖2
0 = 2−(n+a(n)+2) c0,(4)

‖ϕ′
n‖2

0 = 2n+a(n)+2 c1,(5)

where

c0 = 2
∫ 1

0

ϕ(t)2 dt, c1 = 2
∫ 1

0

ϕ′(t)2 dt

are both computable reals.
Let

(6) un(x) =
n∑

k=0

2−b(k) ϕk(x), n = 0, 1, 2, · · · .

Choosing b(k) appropriately, we will have the propo-
sition verified. Let us compute the Hm(0, 1)-norms
of un(x) for m = 0, 1. The orthogonality then implies

‖un‖2
0 =

n∑
k=0

2−2b(k) ‖ϕk‖2
0

= c0

n∑
k=0

2−2b(k)−k−a(k)−2.

(7)

In particular, for whatever a(k) > 0 and b(k) > 0,
the sequence {un(x)} converges effectively to the el-
ement

(8) u(x) =
∞∑

k=0

2−b(k) ϕk(x)

in L2(0, 1). In fact, we have

‖u − un‖2
0 = c0

∞∑
k=n+1

2−2b(k)−k−a(k)−2

< 2−n−1 c0,

since a(k) + 2b(k) > 0. On the other hand, note

‖u′
n‖2

0 =
n∑

k=0

2−2b(k) ‖ϕ′
k‖2

0

= c1

n∑
k=0

2−2b(k)+k+a(k)+2.

(9)

Therefore, taking

b(k) = a(k) +
1
2
k,

we see that {u′
n(x)} converges to

(10) v(x) =
∞∑

k=0

2−b(k) ϕ′
k(x)

in L2(0, 1) since

‖v − u′
n‖2

0 = c1

∞∑
k=n+1

2−a(k)+2.

However, this convergence is not effective (See [5],
p. 16). It is readily seen that v(x) is the weak deriva-
tive u′(x) of u(x), whence u ∈ H1(0, 1). Then the
sequence {un(x)} converges to u(x) in H1(0, 1) as

‖u− un‖2
1 = ‖u−un‖2

0 + ‖v −u′
n‖2

0 → 0, n → ∞.
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This convergence is not effective.
The weak convergence of the sequence {un(x)}

is not effective in the following sense.
Corollary 2.1. There is a û(x) ∈ H1(0, 1)

such that (un − u , û)1 does not converge effectively.
In fact, take û(x) = u(x). Then

(u − un, u)1 = (u, u)1 − (un, un )1 = ‖u− un‖2
1

because of disjointness of the supports of ϕk(x).
Remark 2.1. Analogously to (5), L2-norms

of the m-th derivatives ϕ
(m)
n (x) of ϕn(x) (m =

2, 3, · · ·) are given by

‖ϕ(m)
n ‖2

0 = 2(2m−1)(n+a(n)+2) cm,

cm = 2
∫ 1

0

ϕ(m)(t)2 dt,

where cm are computable. Therefore, taking

b(k) = ma(k) +
(

m − 1
2

)
k

in (6), we have a non-effectively convergent sequence
{un(x)} in Hm(0, 1) which converges effectively in
H0(0, 1). {un(x)} also converges effectively in each
of Hl (0, 1)，m > l ≥ 0.

3. Further observation. Let 0 < s < 1.
The Sobolev space Hs(0, 1) of order s can be de-
fined via the Fourier series expansions. Let w(x) ∈
L2(0, 1) be expanded into the Fourier series

w(x) = α0 +
∞∑

n=1

{αn cos 2nπx + βn sin 2nπx}.

Then we have w ∈ Hs(0, 1) if and only if

(11) |α0|2 +
1
2

∞∑
n=1

(1 + n2)s{|αn|2 + |βn|2} < +∞.

In fact, (11) gives the square ‖w‖2
s of the Hs(0, 1)-

norm of w(x).
Observe that we have the logarithmic convexity

of norms

(12) ‖w‖s ≤ ‖w‖1−s
0 ‖w‖s

1 (0 < s < 1)

for w ∈ H1(0, 1)(⊂ Hs(0, 1) ⊂ H0(0, 1)). In fact, it
is easy to see (12) in the present case. For we have

(1 + n2)s ≤ (1 − s) ε−s + s ε1−s (1 + n2)

for all ε > 0 and n = 0, 1, 2, · · ·. Thus, (11) implies
that if w ∈ H1(0, 1), then

‖w‖2
s ≤ (1 − s) ε−s ‖w‖2

0 + s ε1−s ‖w‖2
1

for all ε > 0. Taking the minimum of the right hand
side, we get (12).

The space Hs(0, 1) is obtained as the complex
interpolation space Hs(0, 1) = [H0(0, 1) ,H1(0, 1)]s
in the sense of Calderón [3]. (See, e.g., Bergh et
al . [2]). Then recall that the computability struc-
ture in Hs(0, 1) is induced from those of H0(0, 1)
and H1(0, 1) if s is computable (See Yoshikawa [6]).

Proposition 3.1. Let 0 < s < 1 be com-
putable. Then the sequence {un(x)} ⊂ H1(0, 1) in
Proposition 2.1 effectively converges to u(x) also in
Hs(0, 1).

In fact, from (12), we have

‖u − un‖s ≤ ‖u − un‖1−s
0 ‖u − un‖s

1.

Note
‖u − un‖1 <

√
c0 + 4c1 = c.

Hence,

‖u − un‖s ≤ cs ‖u − un‖1−s
0 = 2−(1−s)(n+1) cs.

Thus, choose a recursive function es(N) such that

es(N) ≥ N

1 − s
+

s

1 − s
log2 c − 1.

Then we have ‖u − un‖s < 2−N for n > es(N).
Remark 3.1. We may take es(N) ≥ es′(N),

s > s′, since ‖u− un‖s′ ≤ ‖u − un‖s if s > s′ ≥ 0.
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