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Computable sequences in the Sobolev spaces
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Abstract: Pour-El and Richards [5] discussed computable smooth functions with non-
computable first derivatives. We show that a similar result holds in the case of Sobolev spaces by
giving a non-computable H*(0, 1)-element which, however, is computable in any of larger Sobolev
spaces H?(0,1) for any computable s, 0 < s < 1.
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1. Introduction.
a d-dimensional Euclidean space R?. The Sobolev
space H™(Q2) of order m, (m = 0,1,2,---), over
is a Hilbert space consisting of the Lebesgue mea-

Let ©Q be an open set in

surable (complex valued) functions u(x) such that it
and all of its weak derivatives up to order m inclusive
are square summable over §2. The inner-product of
H™(Q) is given by

(U, V)m = Z /Qé)“ u(zx) - 0% v(x) dx,

la|<m

for u, v € H™(2). Here @ = (aq,- -+ ,q) € N™ are
multi-indices. Thus, the length of « is |o| = a1 +
--- 4 ag. Recall also 0% = 97" --- 95 for a partial
derivation of order a.. Recall ||ull;m = v/ (u, w)pm, de-
fines the norm of u € H™ (). In particular, the
Sobolev space of order 0, H°(Q), coincides with the
Lebesgue space £2(£) of the square summable func-
tions. For these function spaces, see any standard
textbook of partial differential equations or func-
tional analysis. See, e.g., Adams [1], also Hérmander
[4]. The computability notion in a separable Hilbert
space is discussed in Pour-El and Richards [5]. Com-
putablity properties of the Sobolev spaces are dis-
cussed in Zhong [7] for the case 2 = R.
The inclusion relation

(1) H™(Q) € HY(Q), m >1>0,

is clear from the definition. (1) means that the

canonical injection
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Effective and non-effective convergence; Sobolev spaces.

2) H"()sur—ucH(Q), m>1>0

is continuous.

It is a classical fact that if  has a nice (C*)
boundary 9, then (,2, H'(Q)(C C>=(Q)) is dense
in each of H™ (). Actually, the set spanned by the
C*° functions supported in closed disks intersecting
with , centered at rational points and with rational
radii, is contained in (1,2, H! () and dense in each
H™ (). Note then that we have a common effective
generating set for all the H™ () consisting of ratio-
nal dilations and translations of a fixed C*° function
supported in the unit disk (as the one analogous to
©(t) given below). Thus, by the First Main The-
orem of Pour-El and Richards [5], the injection (2)
preserves computability. In particular, in the present
context, if u is computable in H™(2), then so is it
in HY(Q), m > £ > 0.

However, the mapping (2) also maps non-
computable elements in smaller spaces H™ () to
computable elements in larger spaces H*($2). Similar
phenomena have been observed for computability in
the standard sense of Turing/Lacombe/Grzegorczyk:
There is a computable function f (on the real line R),
which is continuously differentiable, but with non-
computable derivative f’ (See [5]).

Modifying the related arguments in [5], we get,
in fact, an example of a computable sequence of ele-
ments which is non-effectively convergent in H™(€2),
in both of the weak and strong topologies, and which,
nevertheless, converges effectively in any of larger
spaces H'(Q), m > 1> 0.

2. A counterexample. To verify our state-
ment in the last lines of §1, we argue for the case
d=1and Q= (0,1), the unit open interval.

Proposition 2.1. Let d =1 and Q = (0,1).
There is a bounded sequence {u,(z)} C H(0,1)
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which converges to an element u(x) effectively in
HO(0,1) but non-effectively in H*(0,1).

Note that the limit u(z) € H°(0, 1) actually be-
longs to H'(0,1) because of weak compactness. In
fact, we can then extract a subsequence of {un(z)}
which converges weakly to some element (z) in
H(0,1). By Rellich’s theorem, this subsequence
converges to 4(z) in HY(0,1). However, the sub-
sequence already converges to u(x) in H°(0, 1), and
thus a(z) = u(x).

To achieve the proof of the proposition, we
adopt the idea of Pour-El and Richards [5], Chap-
ter 1 §1 (p.52). Let

t2
exp| ———=1], |t/ <1
o(t) = ( 1_t2> g .

0, It > 1

©(t) is a non-negative C* even function and its sup-
port is the closed interval [—1,1].

Let a : N — N be a one-to-one recursive func-
tion which enumerates a recursively enumerable non-
recursive set A. We may assume 0 € A or a(n) > 0
for all n. Now put

(B)  enla) = o202 (g o)),

Each ¢, () is supported on a closed subinterval
270 _ g=(nta(m)+2) g-a(n) | g-(nta(n)+2)]

of (0,1). ¢n(x) and ¢,/ () have disjoint supports

for n # n/. For, we may assume without loss of

generality that a(n) < a(n’) = a(n) + k for some

k > 1. Then disjointness of the supports of @, (x)
and @, () reduces to positivity of the difference

(2—a(n) _ 2—(n+a(n)+2))
_ (Q—a(n') + 2—(n'+a(n')+2))
— 2—(@(”’)-}-2) (2k‘+2 _ 2k—n _ 22 _ 2—”’).
However,
ok+2 _gk—n _92_9=n' > 3.9k 55

since n, n’ > 0 and k > 1.
The £2-norms of ¢, (z) and its derivative ¢/, ()
are given by

(4) lnll§ = 27 Halm+2) ¢,
(5) gy, [I§ = 2 talmt2 ey
where

1 1
co = 2/ et)*dt, ¢ = 2/ ¢ (t)? dt
0 0
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are both computable reals.
Let

n
6) un(z) =) 27"Wep(@), n=01,2---.
k=0

Choosing b(k) appropriately, we will have the propo-
sition verified. Let us compute the H™ (0, 1)-norms
of up(z) form = 0, 1. The orthogonality then implies

n
lunld = 2720 [y 3
(7) h=0

n
. Z 9—2b(k)—k—a(k)—2
k=0

In particular, for whatever a(k) > 0 and b(k) > 0,
the sequence {u,(x)} converges effectively to the el-
ement

(o)

(8) u(z) =Y 27" W gy ()
k=0

in £2(0,1). In fact, we have

(oo}
lu —unl|§ = co Z 9—2b(k)—k—a(k)—2
k=n+1
<i2_n_lcm

since a(k) 4+ 2b(k) > 0. On the other hand, note

n
lunlld =D 272® ol
k=0

9) n
— Z 9—2b(k)+h+a(k)+2
k=0

Therefore, taking
1
b(k) =a(k)+ 5/@,

we see that {u],(z)} converges to

(10) v(z) = 27 g} ()
k=0

in £2(0, 1) since

oo
lo—uplg=cr Y 2700+
k=n+1
However, this convergence is not effective (See [5],
p.16). It is readily seen that v(x) is the weak deriva-
tive u/(z) of u(x), whence u € H(0,1). Then the
sequence {u,(z)} converges to u(z) in H'(0,1) as

lu—unllf = llu—unl§+ v —uplls — 0, n— oo
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This convergence is not effective.

The weak convergence of the sequence {u,(x)}
is not effective in the following sense.

Corollary 2.1. There is a a(x) € H(0,1)
such that (un, —u, 4); does not converge effectively.

In fact, take 4(x) = u(z). Then

(U — Un, U)l = (Ua “)1 - (“na Unp )1 = H“_ “TLH%

because of disjointness of the supports of ().

Remark 2.1. Analogously to (5), £2-norms

of the m-th derivatives @%m)(x) of pp(z) (m =
2,3,--+) are given by

(m)HQ _ 2(2m 1)(n+a(n)+2)

1
m = 2/ (p(m)(t)Q dt,
0

where ¢, are computable. Therefore, taking

b(k) = ma(k) + (m - %) k

lle

in (6), we have a non-effectively convergent sequence
{un(z)} in H™(0,1) which converges effectively in
HY(0,1). {u,(z)} also converges effectively in each
of Hl(o, Hdm >1>0.

3. Further observation. Let 0 < s < 1.
The Sobolev space H*(0,1) of order s can be de-
fined via the Fourier series expansions. Let w(x) €
£2%(0,1) be expanded into the Fourier series

o0
w(zr) = ap + Z {ay, cos2nmx + By, sin2nmx}.

n=1
Then we have w € H*(0,1) if and only if
1 (o)
(11) |aol® + 5 > (140 {Janl® +18a]*} < +oo.
n=1

In fact, (11) gives the square |lwl||? of the H*(0,1)-
norm of w(z).
Observe that we have the logarithmic convexity

of norms
12)  Jwls < flwllg™>lwll} (0<s<1)

for w € H(0,1)(C H*(0,1) C H°(0,1)). In fact, it
is easy to see (12) in the present case. For we have

(14+n*)* <1 —s)e®+se75(1+n?)

foralle >0and n=0,1,2,--
that if w € H(0,1), then

.. Thus, (11) implies

[wllf < (1= s) e [lw]|§ + s €' [Jw]]?
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for all € > 0. Taking the minimum of the right hand
side, we get (12).

The space H*(0,1) is obtained as the complex
interpolation space H*(0,1) = [H°(0,1),H(0,1)]s
in the sense of Calderén [3]. (See, e.g., Bergh et
al. [2]). Then recall that the computability struc-
ture in H*(0,1) is induced from those of H°(0,1)
and H*(0, 1) if s is computable (See Yoshikawa [6]).

Proposition 3.1. Let 0 < s < 1 be com-
putable. Then the sequence {u,(z)} € H(0,1) in
Proposition 2.1 effectively converges to u(x) also in
H5(0,1).

In fact, from (12), we have

lu = nlls < flw = unllg™ llu = uall3.
Note
lu —unll1 < Vo +4cr =c.
Hence,

= un|ls < ¢ JJu— uy||g~* =270+ ¢s,

Thus, choose a recursive function es(N) such that

N
1 s +
Then we have ||u — u,|/s < 2_N for n > es(N).
Remark 3.1. We may take e;(IN) > ey (N),

s> ¢, since ||u— upllsy < |lu—un|sif s>5 >0.

es(N) > 10g2 c—1.
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