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On a distribution property of the residual order of a (mod p)

By Koji CHINEN®) and Leo MURATA**)

(Communicated by Heisuke HIRONAKA, M. J. A., Feb. 12, 2003)

Abstract:

Let a be a positive integer which is not a perfect h-th power with h > 2, and

Qo(z; k,1) be the set of primes p < z such that the residual order of a in Z/pZ* is congruent to
I mod k. It seems that no one has ever considered the density of Q(z; k, 1) for [ # 0 when k > 3.
In this article, the natural densities of Qq(z;4,1) (I = 0,1,2,3) are considered. When I = 0,2,
calculations of §Q,(z;4,1) are simple, and we can get these natural densities unconditionally. On
the contrary, the distribution properties of Q,(x;4,1) for I = 1,3 are rather complicated. Under

the assumption of Generalized Riemann Hypothesis, we determine completely the natural densities

of #Qq(x;4,1) for 1 =1, 3.

Key words:
1. Introduction. Let P be the set of all
prime numbers.

For a fixed natural number a > 2, we can define
two functions, I, and D,, from P to N:

(1.1)
Iy:p+— Ia(p) = |(Z/pZ)X : (a (mOd p))l
(the residual index of a (mod p)),

Dy :pr Da(p) = ﬁ(a (mOd p))
(the residual order of a (mod p) in (Z/pZ)>),

where (Z/pZ)* denotes the multiplicative group of
all invertible residue classes mod p, (a (mod p)) de-
notes the cyclic group generated by a (mod p) in
(Z/pZ)*, and | : | the index of the subgroup.

We have a simple relation

I.(p)Da(p) =p — 1,

but both of these functions fluctuate quite irregu-
larly. C. F. Gauss already noticed that I9(p) = 1
happens rather frequently. And the famous Artin’s
conjecture for primitive roots asks whether the car-
dinality of the set

Ny (z) = {p <z; I(p) = 1}

(1.2)

(1.3)
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tends to oo or not as x — co. On the assumption
of the Generalized Riemann Hypothesis for a certain
type of Dedekind zeta functions, C. Hooley [6] suc-
ceeded in calculating the natural density of Ng(x).
There are various variations of Artin’s conjecture,
among which two papers Lenstra [8] and Murata [9]
considered the surjectivity of the map I,. For any
natural number n, we define

No(z5m) := {p <z I,(p) = n}

Then their results show that, for a square free a with

(1.4)

a # 1 (mod 4), we have, under GRH, an asymptotic
formula

(1.5) N, (z;n) ~ C ™ iz

and C’,g") > 0, where liz := f;(logt)_ldt and the
constant C’,g") depends on a and n. Therefore, for
such an a, the map I, is surjective from P onto N.

And the surjectivity of the map D, is also well
known. Indeed, except for at most finitely many n’s,
the map D, is surjective from P onto N.

Thus these two maps are surjective for those a’s,
but between their surjective-properties we notice a
big difference. Under GRH, for any n € N, (1.5)
means that

(1.6) I;M(n) = {p € P; L(p) =n}

contains infinite elements, but on the contrary, the
set

(1.7)  Di'(n)={p€P; Dulp) = n}

contains only a finite number of elements. In fact, if
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D, (p) = n, then
n+1<p<a®.

And recent study on cryptography shows that char-
acterizing D, is very difficult.

For the purpose of considering the distribution
property of the map D,, here we take an arbitrary
natural number k£ > 2 and an arbitrary residual class
I (mod k) and consider the asymptotic behavior of
the cardinality of the following set:

(1.8) Qa(x;k, 1) :={p <a; Dy(p) =1 (mod k)}.

It is more than 40 years ago, W. Sierpinski first con-
sidered about this problem and H. Hasse proved, by
our notations, that, for odd prime g,

q
1
([4, 5]). Odoni [10] proved the existence of the nat-
ural density of Q.(z;¢,0), and he obtained a simi-
lar results on Q,(x; k, 0) for a composite square free
moduli &.

In this paper we take £ = 4 and consider the dis-
tribution property of Q,(x;4, 1) for all residue classes
1=0,1,2,3. We assume a € N is not a perfect h-th
power with h > 2, and put

the Dirichlet density of Qq(x;q,0)=

a = aja?, ai: square free.
29

When a1 = 2 (mod 4), we define o} by
a; = 2@’1.

With these settings, our results can be stated as fol-
lows:

Theorem 1.1. When [ = 0,2, we have

1Qu(x;4,1) = 6 liz + O (W) ,
where

§o = 62 = 1/3,

do =5/12 and 09 =7/24,

Zf ay 752,
Zf ap = 2.

Theorem 1.2. We assume GRH. And we de-
fine an absolute constant C by
(1.9)
2p
c= ]I (1 —~ 2—) ~ 0.64365.
p=3(mod 4) (p +1)(p_ 1)
p:prime

Then, forl =1,3, we have an asymptotic formula

T
N = 1. S
1Qa(x;4,1) =6 liz+ O <1ogx10g10gx> ,
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and the leading coefficients & (I = 1,3) are given by
the following way:

(D) If a1 =1,3 (mod 4), then 6, = b3 = 1/6.

(II) When a1 =2 (mod 4),

(i) If o} = 1, i.e., a = 2 - (a square number),
then
7 C 7 C
h=———, d3=—+—.
TR TE ®TBTS

(ii) If o} =1 (mod 4) with aj > 1, then
(ii-1) 4f af has a prime divisor p with p = 1
(mod 4), then 6, = 63 =1/6,
(ii-2) if all prime divisors p of ay satisfyp=3
(mod 4), then

5_1 ¢ )
'T6 8 pP—p>—p-1)"

plaj

1 C —2p
b3 = = + — S —
U6 H <p3—p2—p—1>
plaj
(iii) If a] =3 (mod 4), then
(iii-1) if a} has a prime divisor p with p = 1
(mod 4), then 6, = 63 =1/6,
iii-2) if all prime divisors p of o} satisfyp =3
1
(mod 4), then

1 C —2p
=+~ (5———).
' 6+8E<p3—p2—p—1>

1 C —2p
f3=¢c—3 H B2 1)
6 81t \pP-p?—-p-1
plaj
It seems an interesting phenomenon that, in
(I1)-(ii) and -(iii), the densities §; and d3 are con-
troled by whether a} has a prime factor p with p =1
(mod 4) or not. Moreover, we can check easily that,
in all cases, we have a mysterious inequality

01 < d3.
Remark. The contents of this arti-
cle appeared in conference proceedings [1-3].
For the full proofs, see e-Print archive,

http://xxx.lanl.gov/archive/math, article number
math.NT /0211077 and math.NT/0211083.

2. Preliminaries. In this section we intro-
duce some notations and lemmas. For k£ € N, let
Cr = exp(2mi/k). We denote Euler’s totient and the
Mbobius function by ¢(k) and p(k), respectively. For
a prime power ¢¢, ¢°||m means that ¢¢|m and ¢“*! ¢
m.

Let K be an algebraic number field. Then we
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define (2.4) n(z; L/K,C)
(2.1) =t{p : a prime ideal in K,
m(z, K) = #{p : a prime ideal in K, Np <z} unramified in L, (p, L/K) = C, Np < z}.
and Then, under GRH for the field L, we have
(2.2) (2.5) w(x; L/K,C)
1
W (z, K) _ ﬁ—glix—i—O(ﬁ—g\/flog(de"L)+10gdL>,

= ﬁ{p : a prime ideal of degree 1 in K, Np < x}

where Np is the (absolute) norm of p. Moreover let
L/K be a finite Galois extension. Then for a prime
ideal p in K, we define the Frobenius symbol by

(2.3)
(pa L/K) =

q° = q for some prime q
o € Gal(L/K); in L above p,
a’ = a? (mod q) for alla €L
We need the prime ideal theorem for a certain
type of Kummer fields:
Theorem 2.1. For a prime q and i,5 € N U
{0}, we define an extension field

K = QG G/,

and we put

n= (K5 Ql.

D = the discriminant of Ki(?.
Then, under the condition

z > exp(10nlog® | D)),
we have
7 (, Kf‘?) =liz + O(nze v 1Ogﬁ“/"2),

where the constant implied by O-symbol and the pos-
itive constant ¢ depend only on a and q.
Proof. For the field Ki(?, we have an estimate

|D| < (n?[a])".

Then Theorems 1.3 and 1.4 of Lagarias-Odlyzko [7]
give the desired formula. |

And we need the Chebotarev theorem with
GRH:

Theorem 2.2 (Chebotarev density theorem,
GRH). Let K be an algebraic number field, L/ K
be a finite Galois extension and C be a conjugacy
class in G = Gal(L/K). We define w(x; L/K,C) by

as T — o0,

where dy, is the discriminant of L and ng, = [L : Q).

Proof. Lagarias-Odlyzko [7, Theorem 1.1]. [l

3. Outline of proof.

Proof of Theorem 1.1. Generally speaking, the
condition “Dg(p) = j (mod 4)” is rather difficult to
handle. So, using the relation (1.2), we transform the
condition on D,(p) into some conditions on I,(p).
First we consider Q,(z;4,0):

(3.1) $Qa(x:4,0)
zﬁ{pgx; p =1 (mod 4)}

—> #{p <z p=1 (mod 2711), 27|, (p)}
j=1
+> #{p<a; p=1(mod 277, 2|L(p)}.
j=1
The first term of the right hand side of (3.1) is calcu-
lated by the Siegel-Walfisz theorem. As to the other
terms, we note that, when i > j, “p = 1 (mod 2°)
and 27|I,(p)” if and only if p splits completely in the
field KEQJ) So we can use Theorem 2.1 to estimate
them. In a similar way to Hooley [6], we obtain

(3.2)
1Qa(7;4,0)

1 1 1 .
- {m 2 <[K<> QKD Q]>}”

x
O ———— ).
<1ogx10g 10gx>

Explicit calculation of the extension degrees in the
above formula brings the desired result.
When [ = 2, we notice that

ﬁQa(x; 4) 2) = ﬁQa(x; 2) 0) - ﬁQa(x; 4) 0)

We already have the asymptotic formula for
#Qa(x;4,0), and from Odoni’s result, we have

x
a(7;2,0) =01i )
8Qa(x;2,0) =4 1x+0<10gx10g10gx>
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where § = 2/3 if a; # 2 and 6 = 17/24 if a1 = 2.
This completes the proof of Theorem 1.1. |
Proof of Theorem 1.2. First we introduce the

set
(3.3) Ny(z; k; s (mod t))
= {p < x; p€ Ny(x; k), p=s (mod t)}

Then, in a similar way to (3.1), we can deduce the
following formulas:

(34)  #Qa(r;4,1)

_ .9f Lof+2. f f+2
- a ) )
E E BNg(z;27+1-2 142/ (mod 277%))
>11>0

+3 ) i (2327412742, 143:27 (mod 2/+2))
£>11>0

and
(3.5)  #Qa(;4,3)

= 3D N3 2 1272 142 (mod 2772))
£>11>0

3D T #NG(@i 2+ 12072143 2 (mod 2772)).
£>11>0

As was pointed out in Introduction, the natural den-
sity of the set N, (z; k) is estimated under GRH with
an error term in Murata [9]:

(3.6)
(oo}
Nk = o S D S o)y
d|k0 ne1 nkd
+O<{n10g10gx+1oga} x2 >,
log” x
where

H p (the core of k),
plk
p:prime

Grkd = Q(Cns Cras a'/*™).

This is obtained by considering the decomposition of
prime ideals of K}, = Q(C,,a'/*) in G kd, and the
prime ideal theorem (under GRH) for Gy, k4.

The set Ng(z;k;s (mod t)) can be estimated
along the same lines, but we must appeal to the
Chebotarev density theorem (see Theorem 2.2) in-
stead of the prime ideal theorem to deal with the
condition p = s (mod t). For k = (j +4l) -2/, s =
14+4-2f,t =22 with f >1,1>0,i=1or 3 and
7 =1or 3, we have, under GRH,
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(3.7)  #Ng(z;k; s (mod t))
_ ko Zﬂ(d)z p(n )Cz(k”d) liz
¢(ko) e d = [Gnra: Q]
T
+ O ( e (10g10gx)4> ,
where Gmkd = Gpri(¢) and the coefficient

ci(k,n,d)is determined in the following way: we con-
sider of € Gal(Gy, ka/Ky) satisfying the conditions

1° o¥|g, 0 = id.
2° oflqe,) = 0i

where 0; € Gal(Q(¢:)/Q) is an automorphism deter-
mined by (; — (. Since there exists at most one o}
with the above conditions, for ¢ = 1, 3, we can define

(3.8)

sy, d) = { 1, if of e>.<ists,
0, otherwise.
/ Gk,n,d
Gin,d
Q(¢) = Q(Car+2)
Q(Car)
Q

If we combine (3.4) and (3.7), after estimation of
the error terms we get the asymptotic formula for
£Qa(z;4,1) (1 =1,3). Now we write k = (1 +41) - 2/
and k' = (3 + 4l) - 2. Then we have

x
alz;4,1) = o li )
1Qa(x;4,1) = liz+ O <1ogx10g10gx>

and the coeflicients §; and d3 are given by
(3.9)
Z Z k/’o Z M Z M Cl k? n, d)
f>1 l>0 d|k n Gk n,d - Q]
ko (d) <~ p(n)es(k',n, d)
+ 5
Z Z Z [Gk’,n,d . Q]

>1 z>0 d|k’ n
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(3.10)

k’o d) n)cs(k,n,d
ZZ ZM( )

PPLL
>1 z>0 d|k n G’f nd: Q)

ko (d) <~ p(n)er (k' n, d)
- Z Z Z (Grrna:Ql

>1 z>0 d|k’ n

In order to calculate these infinite sums, we need the
following lemma:

Lemma 3.1. Let k be the odd part of k and
(a, b) be the least common multiple of a and b. Then
we have

(i)
DDy

l>O d|ko n:odd
d:odd

+ (the same term but k — k')
1
2_f'

nkxp( n, k:d

(i)
p(n)
nko((n, kd))

>
z>o d|ko
d:odd

>

n:odd
ay|(n,kd)

+ (the same term but k — k')
1 .
_)ar if a1 =1

0 if ap > 1.

We can determine the exact values of [ nkd: Q]
and c¢;(k,n,d) (and the same quantities but k — k),

then we get the desired natural densities. |
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