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Generic polynomials over Q with two parameters

for the transitive groups of degree five

By Ki-ichiro Hashimoto
∗) and Hiroshi Tsunogai

∗∗)

(Communicated by Heisuke Hironaka, m. j. a., Nov. 12, 2003)

Abstract: In this article, we construct generic polynomials over Q with two parameters
for all transitive subgroups of the symmetric group of degree 5 by considering the action on the
moduli space of the projective line with ordered five marked points. Although polynomials having
such properties are already known, our device is unifying through all the cases, and in some cases
we obtain polynomials with much simpler coefficients.
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1. Introduction. All the transivite sub-
groups of the symmetric group S5 of degree 5 are
the cyclic group C5 of order 5, the dihedral group
D5 of order 10, the Frobenius group F20 = F5,4 of
order 20, the alternating group A5 of order 60, and
S5 itself. In this article, we give generic polynomials
for all of these subgroups over Q with two parame-
ters by considering the action on the moduli space of
the projective line with ordered five marked points.

While polynomials having such properties are
already known [1–3, 5, 6], the main features of this
article are that our device is unifying through all the
cases, and that our polynomials have much simpler
coefficients for the cases of C5 and A5. We remark
that, for any group G listed above, it is known that
the essential dimension of G over Q is two, which
is the minimum number of parameters for generic
polynomial ([2, 5]).

2. The action of S5 on M0,5. Let M0,5

be the moduli space of projective lines with ordered
five marked points:

M0,5 =
(
(P1)5 � (weak diagonal)

)
/PGL(2)

= {(x1, . . . , x5)|xi ∈ P1, xi �= xj(i �= j)}/PGL(2),

where PGL(2) = Aut(P1) acts diagonally. We de-
note the class of (x1, . . . , x5) by [x1, . . . , x5]. The
function field

K := Q(M0,5) = Q(x1, . . . , x5)PGL(2)
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is purely transcendental over Q of degree two and
generated by the cross-ratios

xi − xk

xi − xl

/
xj − xk

xj − xl
.

The symmetric group S5 of degree 5 acts on M0,5

by permutation of components:

σ · [x1, . . . , x5] := [xσ−1(1), . . . , xσ−1(5)]

(σ ∈ S5), and also on the function field K by σ ·
ϕ := ϕ ◦ σ−1 (σ ∈ S5, ϕ ∈ K). This action is faith-
ful and can be described concretely. A point P =
[x1, . . . , x5] ∈ M0,5 can be normalized to the form
[0, xy, x, 1,∞] by a unique element of PGL(2), where

(1)




x =
x3 − x1

x3 − x5

/
x4 − x1

x4 − x5
,

y =
x2 − x1

x2 − x5

/
x3 − x1

x3 − x5

can be regarded as local coordinate functions on
M0,5. By the use of x, y, we identify M0,5 with(
(P1 � {0, 1,∞})2 � {xy = 1}. Then we have

K = Q(M0,5) = Q(x, y). The action of S5 on
Q(x, y) is described as follows: For example, con-
sider the action of the element α = (1 2 3 4 5). Put
P = [x1, . . . , x5] = [0, xy, x, 1,∞]. Then α−1(P ) =
[x2, x3, x4, x5, x1] = [xy, x, 1,∞, 0] = [0, 1 − y, 1 −
xy, 1,∞], where the renormalization is given by ξ 
→
(ξ − xy)/ξ. Thus we obtain

(2) α :




x 
−→ 1 − xy

y 
−→ 1 − y

1 − xy
.
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In the following sections, for each subgroup G

listed above, we give a polynomial fG(X) ∈ KG[X]
whose splitting field coincides with K. Our main
task to obtain a generic polynomial over Q from
fG[X] is to show that KG is rational over Q of tran-
scendental degree two. (We carried out this calcula-
tion with Maple with grobner package).

3. Dihedral group D5 of order 10. Let
D5 be the subgroup of S5 generated by α =
(1 2 3 4 5) and β = (1 3)(4 5). Then D5 is a di-
hedral group of degree 5, and is the stabilizer of a
necklace permutation (“juzu-junretsu” in Japanese)
(1, 2, 3, 4, 5). The action of α on K = Q(x, y) is de-
scribed in (2). That of β on K is given by

β :




x 
−→ x

y 
−→ 1 − y

1 − xy
.

Let S = OrbD5(x) be the D5-orbit of x:

S =
{

x, 1− xy, y,
1 − y

1 − xy
,

1 − x

1 − xy

}
,

and put f(X) :=
∏

u∈S(X − u) =: X5 + c4X
4 +

c3X
3 + c2X

2 + c1X + c0 ∈ KD5 [X]. Since the
stabilizer of S in Aut(K/Q) is D5, KD5 coincides
with K(c0, . . . , c4) and f(X) is a D5-polynomial over
KD5 .

Theorem 1. (1) The fixed field KD5 =
K(c0, . . . , c4) of D5 is rational (i.e. purely transcen-
dental over Q with degree 2). Indeed we have KD5 =
Q(a, b) where

c0 = a, c1 = b, c2 = a2 − a − 1 − 2b,

c3 = b − a − 3, c4 = a − 3.

(2) (reconstruction of Brumer [1], Hashimoto
[4]) The polynomial

fD5 (a, b; X)

:= X5 + (−3 + a)X4 + (3 + b − a)X3

+ (−1 − a − 2b + a2)X2 + bX + a

is a generic polynomial for D5 over Q.
Proof. (1) Write c0, . . . , c4 in terms of x, y.

Then the equations among ci’s can be verified by
straight forward calculation with computer. To find
the equations, one can do with Gröbner basis algo-
rithm. We may find them by hand if we use a re-
markable relation u+α(u)α−1(u) = 1 for any u ∈ S.

(2) Let L ⊃ K ⊃ Q be any field extention with
Gal(L/K) � D5. By the normal basis theorem, L

is isomorphic to K[D5] as K[D5]-modules. Hence
there exists a sub-K[D5]-module W =

⊕5
i=1 Kxi of

L isomorphic to the permutation representation, i.e.
σ(xi) = xσ(i). Let x, y be as in (1) and define a, b

as above. When x �= y, D5 acts on the roots of
fD5 (a, b; X) ∈ K[X] and L is the splitting field of
fD5 (a, b; X) over K. (When x = y(= (−1 ±√

5)/2),
we need a suitable change to W , but we omit the
detail here.)

4. Cyclic group C5 of order 5. Consider
the cyclic subgroup C5 = 〈α = (1 2 3 4 5)〉 of D5.
We show the rationality of the fixed field KC5 , which
is a quadratic extension of KD5 = Q(a, b) (a, b are
as in Theorem 1).

Let c =
∏

i∈Z/5Z(αi(x)−αi+1(x)) =
∏

u∈S(u−
α(u)). Then, we have α(c) = c, β(c) = −c, from
which follows KC5 = KD5 (c) = Q(a, b, c) and c2 ∈
KD5 . Writing c2, a, b in terms of x, y, we have the
following relation among them:

H(a, b, c)(3)

:= c2 + 4b3 + (−a2 + 30a− 1)b2

+ (−24a3 + 34a2 + 14a)b

+ (4a5 − 4a4 − 40a3 + 91a2 − 4a) = 0.

Remark. The equation (3) defines an elliptic
surface with a base curve P1

a with singularity. By
the theory of elliptic surfaces, we know that (3) is
rational over Q. The crucial point of our argument
is to show that it is rational over Q.

The defining ideal I of the singular locus of
H(a, b, c) = 0 is(

H,
∂H

∂a
,
∂H

∂b
,
∂H

∂c

)
= (a2 − 11a− 1, b− 3a − 1, c).

One can desingularize H(a, b, c) = 0 by blowing up
along I successively. Then after blowing up four
times, we obtain a smooth model birational to P2

over Q.
Theorem 2. The C5-fixed field KC5 =

Q(a, b, c) is rational over Q. Indeed we have KC5 =
Q(A, B), where

(4)




A = −2a3 − 2a2 + 13a− 7ab + b

8a2 − 33a− ab − 7b + 2

B = − c

8a2 − 33a− ab − 7b + 2
.



144 K. Hashimoto and H. Tsunogai [Vol. 79(A),

Indeed we have a = anum/Q, b = bnum/Q2, c =
cnum/Q3, where


anum := −A3 − A2 − 7B2A + B2

bnum := 2A5− 2A4−8B2A4 + 36A3B2−145B4A2

+ 3A2 − 22B2A2 + 4B2A + 120B4A

− 2A − 13B2 − 180B4 − 625B6

cnum := −2BP 2

P := A4 − 2A3 + 25B2A2 − A2 + 2A + 1

+ 25B2 + 125B4,

Q := −A + 1 + B2A + 7B2.

Corollary 3. The polynomial fC5
1 (A, B; X) :=

fD5 (a, b; X) is a generic polynomial for C5 over Q.
The polynomials

fC5
2 (A, B; X)

= X5 − (2 − 2A + A2 + 15B2)P
Q2

X3

+
2BP 2

Q3
X2 +

(1 − A)P 2

Q3
X − 2BP 2

Q3
,

fC5
3 (A, B; X)

= X5 − P (A2 + 1 + 10B2)
Q2

X3

+
(A2 + 3B2 + 3B2A2 + 25B4)P 2

Q4
X

+
2(A3 + A2 + 7B2A − B2)BP 2

Q4
,

are also generic polynomials for C5 over Q.
Proof. The transformation of variables are ob-

tained in the process of desingularization. To show
the genericity, let L ⊃ K ⊃ Q be any field extention
with Gal(L/K) � C5. By the normal basis theorem,
L is isomorphic to K[C5] as K[C5]-modules. Take
xi ∈ L such that L =

⊕5
i=1 Kxi with σ(xi) = xσ(i),

and put x, y as in (1) and define a, b, c as above
(If x = y, make a similar modification to the case
of D5). Since Gal(L/K) � C5, c must belong to K.
Define A, B ∈ K by (4). Then the splitting field of
fC5
1 (A, B; X) ∈ K[X] over K coincides with L.

Put x′ := x − α(x) and denote its C5-orbit by
S′ = OrbC5 (x′). Then the coefficients of f(X) :=∏

u∈S′(X −u) is contained in KC5 , and the splitting
field of f(X) over KC5 is K. By expressing the co-
efficients in terms of A, B, we obtain fC5

2 (A, B; X).
If we do the same work with x′′ := x−α2(x) instead
of x′, we obtain fC5

3 (A, B; X).

5. Frobenius group F5,4 of order 20. Let
α = (1 2 3 4 5) and γ = (1 5 3 4). They generate
a Frobenius group F5,4 = 〈α, γ〉 of order 20. The
action of γ on K is given by

γ :




x 
−→ x

x − 1

y 
−→ x − 1
x(1 − y)

.

The stabilizer of x in F5,4 is 〈γ2〉. Then u0 := x +
γ(x) = x2/(x − 1) is γ-invariant and its F5,4-orbit
S′ := OrbF5,4(u0) is

Orb〈α〉(u0)

=
{

x2

x − 1
,−(1− xy)2

xy
,

y2

y − 1
,

− (1 − y)2

y(1 − x)(1 − xy)
,− (1 − x)2

x(1− y)(1 − xy)

}
.

We obtain a generic polynomial for F5,4 over Q by
taking the monic polynomial whose roots are S′. The
following polynomial of Lecacheux is obtained after
a variable change X 
→ 1/X.

Theorem 4 (Lecacheux [6]). The polynomial

fF5,4 (s, t; X)

= X5 +
(

t2d − 2s− 17
4

)
X4

+
(

3td + d +
13s

2
+ 1
)

X3

−
(

td +
11s

2
− 8
)

X2 + (s − 6)X + 1

where d = s2 + 4, is a generic polynomial for F5,4

over Q.

6. The alternative group A5 of order 60.
Let α = (1 2 3 4 5) and ω = (1 5 4). They generate
the alternative group A5 = 〈α, ω〉 of order 60. The
action of ω on K is given by

(5) ω :




x 
−→ 1
1 − x

y 
−→ 1 − x

1 − xy
.

The stabilizer of x in A5 is 〈(1 3)(4 5), (1 4)(3 5)〉 �
V4 (Klein’s four group). Then the stabilizer of v0 :=
x + ω(x) + ω2(x) = (1 − 3x + x3)/x(x− 1) in A5 is
of order 12, and the A5-orbit S′′ := OrbA5 (v0) of v0

coincides with



No. 9] Generic polynomials for the transitive groups of degree five 145

Orb〈α〉(v0)

=
{

1 − 3x + x3

x(x − 1)
,
1 − 3x2y2 + x3y3

xy(1 − xy)
,
1 − 3y + y3

y(y − 1)
,

1 − 3xy − 3y2 + 6xy2 + y3 − 3x2y3 + x3y3

y(1 − x)(1 − y)(1 − xy)
,

1 − 3xy − 3x2 + 6x2y + x3 − 3x3y2 + x3y3

x(1 − x)(1 − y)(1 − xy)
,

}
.

Taking the monic polynomial whose roots are S′′, we
obtain the following polynomial.

Theorem 5. (1) The fixed field KA5 of A5 is
rational. Indeed we have KA5 = Q(u, v) where


u = (a2 − 10a + 1 − b)/a

v = ((2a5 + 18a4 − 140a3 + 13a2 − 2a)

− (4a3 + 20a2 + 6a)b − a2b2)/a3.

(2) The polynomial

fA5 (u, v; X)

= X5 + uX4 + (−6u − 10)X3 + vX2

+(−u2+12u+25−3v)X+(u3+24u2+27u−24+9v)

is a generic polynomial for A5 over Q, whose dis-
criminant is the square of

(24000− 109600u− 54720u2 + 91032u3

+ 68280u4 + 13624u5 + 840u6 + 16u7)

+ (−28400 + 36240u + 44284u2 + 9240u3 + 332u4)v

+ (6480 + 1386u− 90u2 − 4u3)v2 − 27v3.

Remark. It would be worth remarking that
the discriminant is a square of an irreducible poly-
nomial. In the case that the discriminant is a square
of a prime number p for u, v ∈ Z, the only prime p

ramifies in the splitting field of fA5 (u, v; X). Hence,
composing it with a quadratic field K in which p

ramifies, we obtain an unramified A5-extension of
K. The following table is a list of values u, v ∈ Z

for which the discriminant of fA5 (u, v; X) = X5 +
c4X

4 +c3X
3 +c2X

2 +c1X +c0 is a square of a small
prime p.

u v
(−1

p

)
p c4 c3 c2 c1 c0

−7 −75 653 −7 32 −75 117 −55
0 1 2053 0 −10 1 22 −15

−7 −77 −2083 −7 32 −77 123 −73
−7 −79 3329 −7 32 −79 129 −91
−5 −39 5413 −5 20 −39 57 −35
−6 −55 7433 −6 26 −55 82 −33

1 −7 −8311 1 −16 −7 57 −35

7. The symmetric group S5 of order 120.
By a similar method, one can obtain a generic poly-
nomial for S5 over Q. We omit a detail.

Theorem 6. (1) The fixed field KS5 of S5

is rational. Indeed we have KS5 = Q(U, V ) where


U = −u2 − 15u− 57

V =
v + 90
2u + 15

− 13.

(2) The polynomial

fS5 (U, V ; X)

= X5 + (U − 8)X4 + (4UV + 3V + 15)X3

+ (4UV 2 + 3V 2−4UV −3V −2U2−22U−26)X2

+ (−4U2V −15UV −9V + 3U2 + 23U+ 19)X + U3

is a generic polynomial for S5 over Q.
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