
14 Proc. Japan Acad., 79, Ser. A (2003) [Vol. 79(A),

Normalized double sine functions

By Nobushige Kurokawa∗) and Shin-ya Koyama∗∗)

(Communicated by Shokichi Iyanaga, m. j. a., Jan. 14, 2003)

Abstract: We express normalized double sine functions of integer periods (N1, N2) via
the standard double sine function of period (1, 1). As an application we give an Euler product
expression using the di-logarithm for the double zeta function ζ(s,FpN1 )⊗ ζ(s,FpN2 ) for a prime
number p and integers N1, N2.
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1. Definitions and results. Normalized
multiple sine functions are generalizations of the
usual sine function. We studied their basic proper-
ties in previous papers [KoKu1, KoKu2, KuKo] with
some applications.

For ω1, . . . , ωr > 0 and x > 0, the multiple Hur-
witz zeta function is defined by Barnes [B] as

ζr(s, x, (ω1, . . . , ωr))

:=
∞∑

n1,...,nr=0

(n1ω1 + · · ·+ nrωr + x)−s

in Re(s) > r. This has the analytic continuation
to all s ∈ C as a meromorphic function, and it is
holomorphic at s = 0. Then the normalized multiple
gamma function is defined as

Γr(x, (ω1, . . . , ωr))

:= exp
(

∂

∂s
ζr(s, x, (ω1, . . . , ωr))

∣∣∣∣
s=0

)
.

This is a constant multiple of the multiple gamma
function ΓB

r (x, (ω1, . . . , ωr)) of Barnes [B]:

Γr(x, (ω1, . . . , ωr))

= ΓB
r (x, (ω1, . . . , ωr))/ρr(ω1, . . . , ωr).

Now, the normalized multiple sine function is

Sr(x, (ω1, . . . , ωr))

:= Γr(x, (ω1, . . . , ωr))−1

× Γr(ω1 + · · ·+ ωr − x, (ω1, . . . , ωr))(−1)r

.
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For example

S1(x, ω) = Γ1(x, ω)−1Γ1(ω − x, ω)−1

= 2 sin(πx/ω),

since we have Γ1(x, ω) = (2π)−1/2Γ(x/ω)ω
x
ω − 1

2 from
ζ1(s, x, ω) = ω−sζ(s, x/ω).

To simplify the notation we put

Sr(x) := Sr(x, (1, . . . , 1)),

Γr(x) := Γr(x, (1, . . . , 1)),

ζr(s, x) := ζr(s, x, (1, . . . , 1)).

Hence

Sr(x) = Γr(x)−1Γr(r − x)(−1)r

and

Γr(x) = exp
(

∂

∂s
ζr(s, x)

∣∣∣∣
s=0

)
.

Here we investigate normalized double sine
functions, especially in the rational period cases:
S2(x, (ω1, ω2)) with ω2/ω1 ∈ Q. The following theo-
rem expresses them in terms of S2(x):

Theorem 1.1. Let N1, N2 be positive integers
with the greatest common divisor N0. Then we have

(1.1) S2(x, (N1, N2))

=
(N2/N0)−1∏

k1=0

(N1/N0)−1∏
k2=0

S2

(
x + N1k1 + N2k2

N1N2/N0

)
.

As application of Theorem 1.1, we compute the
absolute tensor product of the Hasse zeta functions
of finite fields with pN1 and pN2 elements:

Theorem 1.2. Let N1, N2 be positive integers
with the greatest common divisor N0. The absolute
tensor product of the Hasse zeta functions for finite
fields FpN1 and FpN2 is given as follows:
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ζ(s,FpN1 )⊗ ζ(s,FpN2 )

= exp

(
− 1

2πi

N2
0

N1N2

∞∑
n=1

p−snN1N2/N0

n2

+
(

isN0 log p

2π
− 1
) ∞∑

n=1

p−snN1N2/N0

n

+
∞∑

n=1

p−snN1

n
f1(n)

+
∞∑

n=1

p−snN2

n
f2(n) + Qp(s)

)
,

where

f1(n) =


(e2πinN1/N2 − 1)−1

(
N2

N0
� | n
)

N2 −N0

2N0

(
N2

N0
|n
) ,

f2(n) =


(e2πinN2/N1 − 1)−1

(
N1

N0
� | n
)

N1 −N0

2N0

(
N1

N0
|n
)

and Qp(s) is a quadratic polynomial in s.

2. Proof of Theorem 1.1. It suffices to
show when N0 = 1, since the homogeneity [KuKo,
Theorem 2.1 (e)] of the multiple sine functions gives

S2(x, (N1, N2)) = S2

(
x

N0
,

(
N1

N0
,
N2

N0

))
.

In case N0 = 1, the right hand side of (1.1) is
calculated as follows:

N2−1∏
k1=0

N1−1∏
k2=0

S2

(
x + N1k1 + N2k2

N1N2

)
(2.1)

=
N2−1∏
k1=0

N1−1∏
k2=0

Γ2

(
x + N1k1 + N2k2

N1N2

)−1

Γ2

(
2− x + N1k1 + N2k2

N1N2

)
=

N2−1∏
k1=0

N1−1∏
k2=0

exp
(

∂

∂s

∣∣∣∣
s=0(

−ζ2

(
s,

x + N1k1 + N2k2

N1N2

)
+ ζ2

(
s, 2− x + N1k1 + N2k2

N1N2

)))

= exp
(

∂

∂s

∣∣∣∣
s=0

N2−1∑
k1=0

N1−1∑
k2=0(

−ζ2

(
s,

x + N1k1 + N2k2

N1N2

)
+ ζ2

(
s, 2− x + N1k1 + N2k2

N1N2

)))
.

The double sum is computed as follows:

N2−1∑
k1=0

N1−1∑
k2=0(
−

∑
m1,m2≥0

(
m1 + m2 + x+N1k1+N2k2

N1N2

)−s

+
∑

m1,m2≥0

(
m1 + m2 + 2− x+N1k1+N2k2

N1N2

)−s
)

= (N1N2)s
N2−1∑
k1=0

N1−1∑
k2=0(

−
∑

m1,m2≥0

(
(m1N2 + k1)N1

+ (m2N1 + k2)N2 + x
)−s

+
∑

m1,m2≥0

(
(m1N2 + N2 − k1 − 1)N1

+ (m2N1 + N1 − k2 − 1)N2

+ N1 + N2 − x
)−s

)
= (N1N2)s

(
−ζ2(s, x, (N1, N2))

+ ζ2(s,N1 + N2 − x, (N1, N2))
)
.

We previously obtained in the proof of [KuKo, The-
orem 2.1(b)] that the function

−ζ2(s, x, (N1, N2)) + ζ2(s,N1 + N2 − x, (N1, N2))

has zeros at even nonnegative integers s. In particu-
lar it vanishes at s = 0, thus (2.1) equals

exp
(

∂

∂s

∣∣∣∣
s=0

(
− ζ2(s, x, (N1, N2))

+ ζ2(s,N1 + N2 − x, (N1, N2))
))

= Γ2(x, (N1, N2))−1Γ2(N1 + N2 − x, (N1, N2))

= S2(x, (N1, N2)).

This completes the Proof of Theorem 1.1.
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3. Application. In this section we compute
the absolute tensor product of the Hasse zeta func-
tions of finite fields FpN1 and FpN2 . We first recall
the definition of the absolute tensor product of mero-
morphic functions. Let Zj (j = 1, 2) be meromorphic
functions of order µj . We put the Hadamard product
as

(3.1) Zj(s) = skj eQj(s)
∏′

ρ∈C

Pµj

(
s

ρ

)mj(ρ)

,

where

Pr(u) := (1− u) exp
(

u +
u2

2
+ · · ·+ ur

r

)
,

mj denotes the multiplicity function with kj :=
mj(0), and Qj is a polynomial with deg Qj ≤
µj . Here the product over ρ ∈ C means

limR→∞
∏

0<|ρ|<R Pµj

(
s
ρ

)mj(ρ)

. The absolute ten-
sor product is defined by

(3.2) (Z1 ⊗ Z2)(s)

:= sk1k2eQ(s)
∏′

ρ1,ρ2∈C

Pµ1+µ2

(
s

ρ1 + ρ2

)m(ρ1,ρ2)

,

where Q(s) is a polynomial with deg Q ≤ µ1 + µ2

and

m(ρ1, ρ2)

:= m1(ρ1)m2(ρ2)×


1 if Im(ρ1), Im(ρ2) ≥ 0,

−1 if Im(ρ1), Im(ρ2) < 0,

0 otherwise.

Here we do not give the precise definition of the poly-
nomial Q(s), since it is not necessary for our purpose.
We refer to Manin [M] for an excellent survey.

In this section we will compute this absolute ten-
sor product for the Hasse zeta functions for finite
fields:

Z1(s) = ζ(s,FpN1 ) = (1− p−N1s)−1,

Z2(s) = ζ(s,FpN2 ) = (1− p−N2s)−1,

with p a prime number and N1, N2 positive integers.
The following proposition extends our previous

results on ζ(s,Fp)⊗ζ(s,Fp) for a prime p in [KoKu2].
Proposition 3.1. The absolute tensor prod-

uct of the Hasse zeta functions for finite fields FpN1

and FpN2 is given as follows:

ζ(s,FpN1 )⊗ ζ(s,FpN2 )

= eQ(s)S2

(
isN1N2 log p

2π
, (N1, N2)

)

= eQ(s)

(N2/N0)−1∏
k1=0

(N1/N0)−1∏
k2=0

S2

(
N0

(
is log p

2π
+

k1

N2
+

k2

N1

))
,

where N0 = (N1, N2) and Q(s) is a polynomial of
degree at most two, which depends on p.

Proof. The second equality is seen from Theo-
rem 1.1. In what follows we prove the first one. The
Hadamard product (3.1) for the Hasse zeta function
is given for j = 1, 2 by

ζ(s,FpNj ) = s−1eQ̃Nj
(s)

∞∏′

n=−∞
P1

(
s

2πi
Nj log pn

)−1

with Q̃p,j(s) a linear polynomial depending on Nj .
Thus by the definition (3.2) of the absolute tensor
product,

ζ(s,FpN1 )⊗ ζ(s,FpN2 )

= seQ̃N1,N2 (s)
∏′

k,n∈Z

P2

(
s

2πi
N1 log pk + 2πi

N2 log pn

)mk,n

,

where Q̃N1,N2(s) is a polynomial of degree at most
two and

mk,n := m

(
2πi

N1 log p
k,

2πi

N2 log p
n

)

=


1 if k, n ≥ 0
−1 if k, n < 0
0 otherwise.

Hence

ζ(s,FpN1 )⊗ ζ(s,FpN2 )

= eQ̃N1,N2 (s)s

×

∞∏′

k,n=0

P2

(
s

2πi
N1 log pk + 2πi

N2 log pn

)
∞∏

k,n=1

P2

(
− s

2πi
N1 log pk + 2πi

N2 log pn

) .

We appeal to the r = 2 case of the formula [KuKo,
Proposition 2.4]:

S2(z, (ω1, ω2))

= eQω(z)z

∏′∞

k,n=0
P2

(
− z

ω1k + ω2n

)
∞∏

k,n=1

P2

(
z

ω1k + ω2n

)
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where Qω(z) a polynomial with deg Qω ≤ 2. The
proof is complete.

Taking the following exponential expression of
the normalized double sine functions into account, we
see that the absolute tensor product in Theorem 1.2
has an “Euler product” expression for Re(s) > 0.

Proposition 3.2. The following expression
holds for Im z > 0.

S2(z) = exp
(
− 1

2πi
Li2(e2πiz)

+ (1− z) log(1− e2πiz) + Q(z)
)

,

where Q(z) = πi
2 z2 − πiz + 5πi

12 .
Proof. We recall the formulas of the double

sine functions [KuKo, Example 3.6]:

(3.3) S2(z) = S2(z)−1S1(z),

where Sr(z) (r = 1, 2) are the primitive multiple
sine functions [KuKo]. We have by definition

S1(z) = 2 sin πz

= exp
(
−πiz +

πi

2
+ log(1− e2πiz)

)
and the expression [KuKo, Theorem 2.8 (2.12)]:

S2(z) = exp
(

1
2πi

Li2(e2πiz)

+ z log(1− e2πiz)− πi

2
z2 − ζ(2)

2πi

)
for Im(z) > 0. Thus (3.3) equals

exp
(
− 1

2πi
Li2(e2πiz) + (1− z) log(1− e2πiz)

+
πi

2
z2 − πiz +

5πi

12

)
.

Lemma 3.3. Assume r ∈ C satisfies that
rN = 1. Then we have

1
N

N−1∑
n=0

nrn =


(r − 1)−1 (r �= 1)

N − 1
2

(r = 1).

Proof. The r = 1 case is well-known. Differen-
tiating the formula

∑N−1
n=0 rn = (1 − rN )/(1 − r) in

case r �= 1 leads to the result.
Proof of Theorem 1.2. By the above proposi-

tions all we should compute is the following product:

(N2/N0)−1∏
k1=0

(N1/N0)−1∏
k2=0

S2

(
N0

(
is log p

2π
+

k1

N2
+

k2

N1

))
.

This is equal to the exponential of the sum of the
following double series (3.4), (3.5) and (3.6):

(3.4)

−
N2
N0

−1∑
k1=0

N1
N0

−1∑
k2=0

1
2πi

Li2

(
e−N0s log p+2πi

(
N0k1

N2
+

N0k2
N1

))
,

(3.5)
N2
N0

−1∑
k1=0

N1
N0

−1∑
k2=0

(
1− isN0 log p

2π
− N0k1

N2
− N0k2

N1

)
log
(

1− e−sN0 log p+2πi
(

N0k1
N2

+
N0k2

N1

))
,

(3.6)

N2
N0

−1∑
k1=0

N1
N0

−1∑
k2=0

Q

(
isN0 log p

2π
+

N0k1

N2
+

N0k2

N1

)
.

Put N1 = N0N
′
1 and N2 = N0N

′
2. First the double

sum (3.4) is computed as follows:

−
N ′

2−1∑
k1=0

N ′
1−1∑

k2=0

1
2πi

Li2

(
e
−N0s log p+2πi

(
k1
N′

2
+

k2
N′

1

))

= − 1
2πi

N ′
2−1∑

k1=0

N ′
1−1∑

k2=0

∞∑
n=1

(
p−sN0e

2πi
(

k1
N′

2
+

k2
N′

1

))n

n2

= − 1
2πi

∞∑
n=1

p−sN0n

n2

N ′
2−1∑

k1=0

e
2πi

nk1
N′

2

N ′
1−1∑

k2=0

e
2πi

nk2
N′

1

= − 1
2πi

∑
N ′

1N ′
2|n

p−sN0n

n2
N ′

1N
′
2

= − 1
2πi

1
N ′

1N
′
2

∞∑
n=1

p−sN0N ′
1N ′

2n

n2

= − 1
2πi

N2
0

N1N2

∞∑
n=1

p−snN1N2/N0

n2
.

Next we compute the double sum of (3.5):

N ′
2−1∑

k1=0

N ′
1−1∑

k2=0

(
1− isN0 log p

2π
− k1

N ′
2

− k2

N ′
1

)

log
(

1− e
−sN0 log p+2πi

(
k1
N′

2
+

k2
N′

1

))
.

This equals to the sum of
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−
(

1− isN0 log p

2π

) ∞∑
n=1

p−sN0n

n
(3.7)

N ′
2−1∑

k1=0

e
2πi

nk1
N′

2

N ′
1−1∑

k2=0

e
2πi

nk2
N′

1

and

(3.8)
∞∑

n=1

p−sN0n

n

N ′
2−1∑

k1=0

N ′
1−1∑

k2=0

(
k1

N ′
2

+
k2

N ′
1

)
e
2πi
(

k1
N′

2
+

k2
N′

1

)
n
.

The first part (3.7) agrees to(
isN0 log p

2π
− 1
) ∞∑

n=1

p−sN0nN ′
1N ′

2

n
.

Calculation of the remaining part (3.8) is carried out
as follows:

∞∑
n=1

p−sN0n

n

(N ′
2−1∑

k1=0

k1

N ′
2

e
2πi

k1n

N′
2

N ′
1−1∑

k2=0

e
2πi

k2n

N′
1

+
N ′

1−1∑
k2=0

k2

N ′
1

e
2πi

k2n

N′
1

N ′
2−1∑

k1=0

e
2πi

k1n

N′
2

)

=
∞∑

n=1

p−snN0N ′
1

nN ′
1

N ′
2−1∑

k1=0

k1

N ′
2

e
2πi

k1nN′
1

N′
2 N ′

1

+
∞∑

n=1

p−snN0N ′
2

nN ′
2

N ′
1−1∑

k2=0

k2

N ′
1

e
2πi

k2nN′
2

N′
1 N ′

2

=
∞∑

n=1

p−snN0N ′
1

nN ′
2

N ′
2−1∑

k1=0

k1e
2πi

k1nN′
1

N′
2

+
∞∑

n=1

p−snN0N ′
2

nN ′
1

N ′
1−1∑

k2=0

k2e
2πi

k2nN′
2

N′
1

=
∞∑

n=1

p−snN1

n
f1(n) +

∞∑
n=1

p−snN2

n
f2(n)

by Lemma 3.3.
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