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Normalized double sine functions

EE)

By Nobushige KUrROKAWA™ and Shin-ya KovaMa

(Communicated by Shokichi IYANAGA, M. J. A., Jan. 14, 2003)

Abstract: We express normalized double sine functions of integer periods (Ni, N3) via
the standard double sine function of period (1,1). As an application we give an Euler product
expression using the di-logarithm for the double zeta function ((s, F,~,) ® ((s,F,~.) for a prime

number p and integers Ny, No.

Key words:

1. Definitions and results. Normalized
multiple sine functions are generalizations of the
usual sine function. We studied their basic proper-
ties in previous papers [KoKul, KoKu2, KuKo] with
some applications.

For wy,...,w, > 0 and = > 0, the multiple Hur-
witz zeta function is defined by Barnes [B] as

Cr(svl'v (wlv cee vwr))
o0
= Z (nw1 + -+ npwp + )" °
ni,...,np=0
in Re(s) > r. This has the analytic continuation

to all s € C as a meromorphic function, and it is
holomorphic at s = 0. Then the normalized multiple
gamma function is defined as

7(.(]7«))
= exp (%C,.(s,x, (Wi, W)

L (z, (wr,...

o)

This is a constant multiple of the multiple gamma
function I'Z(z, (w1, ...,w,)) of Barnes [B]:

Fr(l‘, (wh S 7WT))

=TB(z, (w1,...,w))/pr(wi,... ,wy).

Now, the normalized multiple sine function is
Sr(z, (w1, .-, wr))
=T (z, (wi,...,w,.) 7t
X Tp(wy + - + wy

—x,(w,... 7u}r))(_l)r.

2000 Mathematics Subject Classification. Primary 11M38,
11540.
*) Department of Mathematics, Tokyo Institute of Tech-
nology, 2-12-1, Oh-okayama, Meguro-ku, Tokyo 152-8551.
**) Department of Mathematics, Keio University, 3-14-1,
Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522.

Zeta functions; sine functions; multiple zeta functions; multiple sine functions.

For example
Sl(wi) = Fl(m#‘u)ilrl(w - Z‘,W)il
= 2sin(rz/w),

since we have I'y (z,w) = (27)"Y/20(z/w)ws "2 from
G(s,z,w) =w™3((s, z/w).
To simplify the notation we put
Sr(aj) = Sr(ma (17 K 1))a
Te(z) :=Tp(z,(1,...,1)),
Cr(s,x) == Go(s, 2, (1,...,1)).

Hence

Sp(@) = Tp(a) T (r — )Y

)

Here we investigate normalized double sine

and

[,(z) = exp (%Cr(&x)

functions, especially in the rational period cases:
Sa(x, (w1, ws)) with wy/w; € Q. The following theo-
rem expresses them in terms of Sy (z):

Theorem 1.1. Let Ny, N5 be positive integers
with the greatest common divisor Ny. Then we have

(11) Sg(l‘, (Nl,NQ))

(N2/No)—1 (N1/No)—1

= 11 1l

k1=0 ko=0

(IE + lel + NQkQ)
S2
N1N2 /Ny

As application of Theorem 1.1, we compute the
absolute tensor product of the Hasse zeta functions
of finite fields with p™* and p™2 elements:

Theorem 1.2. Let N1, Ny be positive integers
with the greatest common divisor Ny. The absolute
tensor product of the Hasse zeta functions for finite
fields F,n, and F,n, is given as follows:



No. 1]

C(S, Fle ) & C(S, FpN2)

1 Ng o0 p*SanNz/No
=exp | —=—
P 211 N1N2 1 n2

1sNglog p >, p—snViN2/No
it =7 A | £
+ ( 2T Z n
n=1
f: —an1
> —MLNg
Z n) +Qp(s) | ,
where
) N
2minNy /Ny _ 1)1 V2
o )
= Ny — Np NQ‘ ’
2N, Ny "
) N
2minN2 /N1 __ 1 —1 '
=1 ")
2\ = Ny~ Np N
2N0 Ny

and Qp(s) is a quadratic polynomial in s.

2. Proof of Theorem 1.1. It suffices to
show when Ny = 1, since the homogeneity [KuKo,
Theorem 2.1 (e)] of the multiple sine functions gives

Sl (N1, V2)) = 5, (; (%%))

In case Ny = 1, the right hand side of (1.1) is
calculated as follows:

No—1N;—1
x + Niky + Nako
ey ] 11 SQ< )
k1=0 ky=0 NNz
NﬁlNﬁlr x4+ Niki + Noko \
2 NN,

k1=0 ko=0
<2 x4+ Nk + N2k2>

NN,

s=0

7( s ZL’+N1]€1+N2]€2
2 ) N1N2

x + lel + Ngkg
2 —
e (S NiN, )))
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No—1N;—1

2. 2.

5=0 k=0 ko=0

—C s l‘+N1k'1+N2k’2
2 ) N1N2

0
P ds

z + Nik1 + Noko
2 — .
+ C? <57 N1N2
The double sum is computed as follows:
No—1Ni—1
k1=0 ko=0
(— Z (m1 —+ mo + —$+N]1\ZII$2N2/€2) ’
77L1,m;)20
3 (e 42— NNl ) )
ml,mQZO
No—1N;—1
= (VN2 D )
k1=0 ko=0

(‘ > ((m1N2+k1)N1

ml,mQZO
—s
—+ (m2N1 —+ kg)Ng —+ Z)

+ Z ((mlNg + Ny — k1 — l)Nl

m1,mz22>0

+(m2N1+N1 —k‘g—l)N
+N1+N2I)_>

= (NiN2)*(—Cals, @, (N1, N2))
+ Ca(s, Ny + Ny — a, (N4, Ng))).

We previously obtained in the proof of [KuKo, The-
orem 2.1(b)] that the function

—Ca(s, 2, (N1, N2)) + C2(s, N1 + Ny — x, (N1, Na2))

has zeros at even nonnegative integers s. In particu-
lar it vanishes at s = 0, thus (2.1) equals

0
exp %

(= Gals. (N1, N2))

s=0

+ Ca(s, Ny + No — , (Ny, N2)))>

= FQ(Iv (Nla N2))71F2(N1 + Ng — z, (Nla NQ))
= SQ(xa(vaNQ))'
This completes the Proof of Theorem 1.1. L]
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3. Application. In this section we compute
the absolute tensor product of the Hasse zeta func-
tions of finite fields F),~, and Fj~,. We first recall
the definition of the absolute tensor product of mero-
morphic functions. Let Z; (j = 1, 2) be meromorphic
functions of order ;1;. We put the Hadamard product

as
my;(p)
(3.1) Z;i(s) —sﬂeQﬂ()H ( ) J ,
peC
where

2 T

P.(u) :== (1 —u)exp (u—|—%—|—---—|— u7> )
m; denotes the multiplicity function with k; :=
m;(0), and Q; is a polynomial with deg@; <
JIe Here the product over p € C means
. m;(p)
limp oo [To<|p<r Fuy (%)
sor product is defined by

. The absolute ten-

(32) (Z1® Z2)(s)

ok ’ s m(p1,p2)
— ght 26Q(S) H P,u1+,u2 <+ ) ,
p1,p2€C P P2

where Q(s) is a polynomial with deg@ < p; + uo
and

m(plaPQ)

L if Im(py),Im(p2) >0,
—1 if Im(p1),Im(p2) <0,
0 otherwise.

i=m1(p1)ma(p2) X

Here we do not give the precise definition of the poly-
nomial Q(s), since it is not necessary for our purpose.
We refer to Manin [M] for an excellent survey.

In this section we will compute this absolute ten-
sor product for the Hasse zeta functions for finite
fields:

Z1(S) = C(S’Fle) = (1 _p_le)_la

ZQ(S) = C(Sa FpN2) = (1 7p7N2S)715
with p a prime number and Ny, N» positive integers.
The following proposition extends our previous
results on (s, F),)®((s, F}) for a prime p in [KoKu2].
Proposition 3.1. The absolute tensor prod-

uct of the Hasse zeta functions for finite fields Fp,n,
and F,n, is given as follows:

C(S, Fle ) ® C(S, FPNQ)

15IN1No 1
— Q) g, <%7 (Nl,N2)>
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(N2/Ng)—1(N1/Np)—1
ORI | II
k1=0 ko=0

islogp k1 ko
Sy | N —
2(%2W+M+M ’

where Ny = (N1, Na) and Q(s) is a polynomial of
degree at most two, which depends on p.

Proof. The second equality is seen from Theo-
rem 1.1. In what follows we prove the first one. The
Hadamard product (3.1) for the Hasse zeta function

is given for j = 1,2 by
-1
n)

_1 QN (S H Pl ( 271

n=-—o0o Njlogp

¢(s, FpNj )=

with Qp,j(s) a linear polynomial depending on IV;.
Thus by the definition (3.2) of the absolute tensor
product,

((s, Fle) ® C(s, FpNQ)

Mk n

- ' s

= se@N1.N2 (%) H P, 5 ;

g’ k+ 271 n
k,n€Z Nilogp Nz logp

where Qn, n,(s) is a polynomial of degree at most

two and
211 I 2mi
m n
Nilogp ’Nglogp
1 if £, n>0

=< -11if k,n<0
0 otherwise.

Mmgn =

Hence

C(S7FpN1) ® C(S,FPN2)

_ eQNl,N2 (8)8

OOIP s
H 2 2mi k+N2m‘ n

k,n=0 Ni logp 2 logp
oo s :
H P2 T 2mi k + 271 n
k,n=1 N logp N3 log p

We appeal to the r = 2 case of the formula [KuKo,
Proposition 2.4]:

Sa(z, (wi,w2))
o0
H/k 0P2<_ kJZr )
e
eQu(2) , w1 wan
z
ol —=
H 2<w1k—|—w2n)

k,n=1




No. 1]

where () (2z) a polynomial with deg@, < 2. The
proof is complete. L]
Taking the following exponential expression of
the normalized double sine functions into account, we
see that the absolute tensor product in Theorem 1.2
has an “Euler product” expression for Re(s) > 0.
Proposition 3.2.
holds for Im z > 0.

The following expression

1 : Tz
S2(z) = exp <—%L12(€2 )

£ (1 2 log(1 — 7 4 Qz ))

where Q(z) = Ttz — miz + 2%,

Proof. We recall the formulas of the double
sine functions [KuKo, Example 3.6]:

(33) SQ(Z) = 5’2(2)_15”1(2),

where .#.(z) (r = 1,2) are the primitive multiple
sine functions [KuKo]. We have by definition

S1(z) = 2sinmz
= exp (—m’z + %Z + log(1 — 627”"2))
and the expression [KuKo, Theorem 2.8 (2.12)]:

1 : T2
F2(z) = exp (%LQ(@Q )

T

+ zlog(1 — 72’ - %)

2mz) _

for Im(z) > 0. Thus (3.3) equals

1 . )
exp <,Lig(62mz) + (1 = 2)log(1 — €2™%)
27
+ = m 2% —miz+ @
2 12
(]
Lemma 3.3. Assume r € C satisfies that
rV = 1. Then we have
| N2 (r=1)7" (r#1)
— nr’ =
> N1
NS (r=1).
2
Proof. The r =1 case is well-known. Differen-
tiating the formula Ziv 01 = (1-7Y)/(1-7r)in
case r # 1 leads to the result. L]

Proof of Theorem 1.2. By the above proposi-
tions all we should compute is the following product:
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(N2/No)—1 (N1/No)—

I 1L

k1=0

islogp  ky ko
Sa | N —= .
2( 0( o + i + N
This is equal to the exponential of the sum of the

following double series (3.4), (3.5) and (3.6):
(3.4)

Noky Nokz
L12 < Noelogp+27rz( + N, )> ’

1
Ni ””Z | _isNologp _ Noki _ Noks
21 N2 Nl

—sNg log p+27i M+M
1og(1—e (Nz Nl) ;

N2 1
18Ny 1ogp Nok1  Noko
3.6 .
an 3 3 o(Elker, Nk, N
k1=0 ko=0
Put Ny = NgNj and No = NyNJ. First the double

sum (3.4) is computed as follows:

-y i L,LiQ (6 Noslogp+2m(Nlé+Nzi))
2w

o Ny— N{—1
1 P sNon ~ 2 271'17;\7,1 L 27 k,2
= —— E 2 E e 1
27 n?
n=1 k1=0 ko=0
1 p—sNon
_ 1 nT!
=—5= ) 3NN
N{NjIn
1 1 > —sNoN{Nén

_ p
27 NN} ; n2
1 Ng oo p—STLNlNQ/NO
211 NlNQ ot TL2

Next we compute the double sum of (3.5):

Ail Nizl 1 iSNo Ing k’1 ]{12
21 N, Nj
k1=0 ko=0

log (1 _ e—sNo logp+27rz(N, +N—2))

This equals to the sum of
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—sNon

37 — (1 ”Ngiogp ) L

n=1

Naml oy NIy
>y
k1=0 ko=0
and
(3.8)
—sN, . .
ZP S Z Z +ﬁ 62“(5—2%—2)“.
Ny
=0 k2=0
The first part (3.7) agrees to
7sN0nN1N2

<zsN0 logp ) Z P

Calculation of the remaining part (3.8) is carried out
as follows:

N -1
—sNon k1 1 kon
2me
S (z 3
k1=0 ko=0
Ni-1 5—1
n Z 2mi =L )
ko= O k1=0
jo%s) _ ; Nj—1 ’
p NN Ik omi N
= —€
2 nN| N} !
n=1 k1=0
1
oo _
+Zp snNoN, k2 2Imi = 2N/
2
nN, N
n=1 2 ka=0

[Vol. 79(A),

=1 ka=0
e p—an1 o p_S”N2
SN i 3 )
n=1 n=1
by Lemma 3.3. ]
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