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Generalized isometric spheres and fundamental domains

for discrete subgroups of PU(1, n; C)

By Shigeyasu Kamiya

Okayama University of Science, Ridai-cho, 1-1, Okayama 700-0005

(Communicated by Shigefumi Mori, m. j. a., May 12, 2003)

Abstract: Let G be a discrete subgroup of PU(1, n; C). For a boundary point y of the
Siegel domain, we define the generalized isometric sphere Iy(f) of an element f of PU(1, n; C).
By using the generalized isometric spheres of elements of G, we construct a fundamental domain
Py(G) for G, which is regarded as a generalization of the Ford domain. And we show that the
Dirichlet polyhedron D(w) for G with center w convereges to Py(G) as w → y. Some results are
also found in [5], but our method is elementary.
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1. Introduction. Let C be the field of com-
plex numbers. Let V = V 1,n(C) denote the vector
space Cn+1, together with the unitary structure de-
fined by the Hermitian form

Φ̃(z∗, w∗) = −(z∗0w∗
1 + z∗1w∗

0) +
n∑

j=2

z∗j w∗
j

for z∗=(z∗0 , z∗1 , z∗2 , . . . , z∗n), w∗=(w∗
0 , w

∗
1 , w

∗
2, . . . , w

∗
n)

in V . An automorphism g of V , that is a linear bi-
jection such that Φ̃(g(z∗), g(w∗)) = Φ̃(z∗, w∗) for z∗,
w∗ in V, will be called a unitary transformation. We
denote the group of all unitary transformations by
U(1, n; C). Set PU(1, n; C) = U(1, n; C)/(center).
Let V0 = {z∗ ∈ V | Φ̃(z∗, z∗) = 0} and V− = {z∗ ∈
V | Φ̃(z∗, z∗) < 0}. It is clear that V0 and V− are
invariant under U(1, n; C). Set V ∗ = V− ∪ V0 − {0}.
Let π : V ∗ −→ π(V ∗) be the projection map de-
fined by π(z∗0 , z∗1 , z∗2 , . . . , z∗n) = (z1, z2, . . . , zn), where
zj = z∗j /z∗0 for j = 1, 2, . . . , n. We write ∞ for
π(0, 1, 0, . . . , 0). We may identify π(V−) with the
Siegel domain

Hn =
{

z = (z1, z2, . . . , zn) ∈ Cn
∣∣∣

Re(z1) >
1
2

n∑
j=2

|zj |2
}

.

The boundary ∂Hn of the Siegel domain is defined
by
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∂Hn =
{

z = (z1, z2, . . . , zn) ∈ Cn
∣∣∣

Re(z1) =
1
2

n∑
j=2

|zj|2
}
∪ {∞}.

An element of PU(1, n; C) acts on the Siegel domain
Hn and its boundary ∂Hn. Denote Hn ∪ ∂Hn by
Hn. In Hn, we can introduce the hyperbolic metric
d. An element of PU(1, n; C) is an isometry of Hn

with respect to d (see [3, 5] for details).
We concern ourselves with discrete subgroups

of PU(1, n; C). In the study of discrete subgroups of
PU(1, n; C) it is important to consider their funda-
mental domains. In this paper we define the gener-
alized isometric spheres of elements of PU(1, n; C),
which are used for constructing a fundamental do-
main for a discrete subgroup of PU(1, n; C). Also
we discuss the relationship between this fundamen-
tal domain and the Dirichlet polyhedron.

2. Generalized isometric spheres. In this
section we give the definition of generalized isometric
spheres of elements of PU(1, n; C) and discuss their
properties. First we recall some definitions and nota-
tion. The H-coordinates of a point (z1, z2, . . . , zn) ∈
Hn − {∞} are defined by (k, t, z′)H ∈ (R+ ∪ {0})×
R × Cn−1 such that k = Re(z1) − (1/2)

∑n
j=2 |zj|2,

t = Im(z1) and z′ = (z2, . . . , zn). The Cygan metric
ρ(p, q) for p = (k1, t1, z

′)H and q = (k2, t2, Z
′)H is

given by

ρ(p, q) =
∣∣∣∣{1

2
‖Z′ − z′‖2 + |k2 − k1|

}
+ i{t1 − t2 + Im(z′Z′)}

∣∣∣∣12 ,
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where ‖Z′ − z′‖2 =
∑n

j=2 |Zj − zj |2 and z′Z′ =∑n
j=2 zjZj . We note that this Cygan metric ρ is

a generalization of the Heisenberg metric δ in ∂Hn

(see [7]). The Cygan metric in the usual coordinates
can be written as follows:

Proposition 2.1 ([7; Proposition 2.2]). If p =
(z1, z2, . . . , zn) and q = (w1, w2, . . . , wn) in ∂Hn −
{∞}, then

ρ(p, q) =
∣∣∣−(z1 + w1) +

n∑
j=2

zjwj

∣∣∣ 12 = |Φ̃(z∗, w∗)| 12 ,

where z∗ = (1, z1, z2, . . . , zn) ∈ π−1(p) and w∗ =
(1, w1, w2, . . . , wn) ∈ π−1(q).

Let f = (aij)1≤i,j≤n+1 ∈ PU(1, n; C) with
f(∞) �= ∞. We use the same symbol f for a unitary
transformation, which is a lift of f . The isometric
sphere I(f) of f is defined by

I(f) =
{
z = (z1, z2, . . . , zn) ∈ Hn

∣∣
|Φ̃(z∗, q∗)| = |Φ̃(z∗, f−1(q∗))|},

where q∗ = (0, 1, 0, . . . , 0), z∗ = (1, z1, z2, . . . , zn) in
V ∗. This definition does not depend on the choice
of a lift of f (see [5, 10, 11]). It follows that the iso-
metric sphere I(f) is the sphere in the Cygan metric
with center f−1(∞) and radius Rf =

√
1/|a12|, that

is,

I(f) =
{

z = (k, t, z′)H ∈ (R+ ∪ {0}) ×R × Cn−1
∣∣∣

ρ(z, f−1(∞)) =

√
1

|a12|
}

.

It is easy to see that Rf−1 = Rf . We remark that
in the case of PU(1, 1; C), our radius of an isometric
sphere is the square root of the usual one.

We have the same formulae as in Möbius trans-
formations (see [4]).

Proposition 2.2 ([7; Proposition 2.3]). Let g

and h be elements with g(∞) �= ∞, h(∞) �= ∞ and
gh(∞) �= ∞. Then

(1) Rgh =
RgRh

ρ(g−1(∞), h(∞))
;

(2) R2
h = ρ((gh)−1(∞), h−1(∞))ρ(g−1(∞), h(∞)).

Let y be a point of ∂Hn. For an element f of
PU(1, n; C) with f(y) �= y, we define the generalized
isometric sphere Iy(f) of f at y as

Iy(f) =
{
z = (z1, z2, . . . , zn) ∈ Hn

∣∣
|Φ̃(z∗, y∗)| = |Φ̃(z∗, f−1(y∗))|},

where y∗ ∈ π−1(y) and z∗ ∈ π−1(z). We note that
if y = ∞, then I∞(f) is the usual isometric sphere
I(f).

Set

αy(f, z) =
|Φ̃(z∗, y∗)| 12

|Φ̃(z∗, f−1(y∗))| 12 ,

for z∗ = (z∗0 , z∗1 , . . . , z∗n) ∈ π−1(z), y∗ =
(y∗0 , y∗1 , . . . , y

∗
n) ∈ π−1(y) and f−1(y∗) = (f−1(y∗0),

f−1(y∗1), . . . , f−1(y∗n)) ∈ π−1(f−1(y)). By definition,
Iy(f) = {z ∈ Hn | αy(f, z) = 1}. It is easy to see
that

|y∗0 |
1
2 |z∗0 |

1
2 ρ(z, y) = |Φ̃(z∗, y∗)| 12 ,

and

|f−1(y∗0)| 12 |z∗0 |
1
2 ρ(z, f−1(y)) = |Φ̃(z∗, f−1(y∗))| 12 .

In addition we have

Rf

ρ(y, f(∞))
=

|Φ̃(y∗, q∗)| 12
|Φ̃(f−1(y∗), q∗)| 12 , =

|y∗0 | 12
|f−1(y∗0)| 12

where q∗ = (0, 1, 0, . . . , 0). This leads to

αy(f, z) =
|Φ̃(z∗, y∗)| 12

|Φ̃(z∗, f−1(y∗))| 12
=

Rfρ(z, y)
ρ(z, f−1(y))ρ(y, f(∞))

.

Thus we have
Proposition 2.3.

Iy(f) =
{

z ∈ Hn
∣∣∣ ρ(z, y)

ρ(z, f−1(y))
=

ρ(y, f(∞))
Rf

}
.

Remark 2.4. In the case of PU(1, 1; C), the
generalized isometric sphere Iy(f) is an Apollonius
circle, because it is the locus of points which have
the constant ratio between the Euclidean distances
from y and f−1(y).

Let γ be an element of PU(1, n; C) with γ(y) =
∞. It is easy to show that z ∈ γ−1(I(γfγ−1 )) if and
only if γ(z) ∈ I(γfγ−1)). We see that

|Φ̃(γ(z∗), q∗)| 12
|Φ̃(γ(z∗), γf−1γ−1(q∗)| 12 =

|Φ̃(γ(z∗), γ(y∗))| 12
|Φ̃(γ(z∗), γf−1(y∗)| 12

=
|Φ̃(z∗, y∗)| 12

|Φ̃(z∗, f−1(y∗))| 12 .

Thus we have
Proposition 2.5 (cf. [1]). For any element γ

of PU(1, n; C) with γ(y) = ∞,
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Iy(f) = γ−1(I(γfγ−1))

=
{
z ∈ Hn

∣∣ ρ(γ(z), γf−1γ−1(∞)) = Rγfγ−1

}
.

We shall show the basic properties of αy(f, z).
Proposition 2.6 (cf. [1, p. 66]). Let f and g

be elements of PU(1, n; C). Then

(1) α∞(f, z) = Rf

ρ(z,f−1(∞)) ;

(2) αy(f, z) = αg(y)(gfg−1 , g(z));

(3) αy(fg, z) = αy(f, g(z))αy(g, z);

(4) αy(f, z) = ρ(z,y)
ρ(f(z),y)α∞(f, z);

(5) αy(f, z) = αz(f−1 , y).

Proof. (1) This is immediate.
(2) There is an element γ such that γ−1(∞) =

g(y). By definition,

αg(y)(gfg−1 , g(z)) =
|Φ̃(g(z∗), g(y∗))| 12

|Φ̃(g(z∗), gf−1g−1(g(y∗)))| 12

=
|Φ̃(z∗, y∗)| 12

|Φ̃(z∗, f−1(y∗))| 12
= αy(f, z).

(3) Similarly, we have

αy(fg, z) =
|Φ̃(z∗, y∗)| 12

|Φ̃(z∗, g−1f−1(y∗))| 12

=
|Φ̃(z∗, y∗)| 12 |Φ̃(g(z∗), y∗)| 12

|Φ̃(z∗, g−1(y∗))| 12 |Φ̃(g(z∗), f−1(y∗))| 12
= αy(g, z)αy(f, g(z)).

(4) We have

α∞(f, z)
ρ(z, y)

ρ(f(z), y)

=
|Φ̃(z∗, q∗)| 12

|Φ̃(z∗, f−1(q∗))| 12

(
|Φ̃(z∗, y∗)| 12
|z∗0 |

1
2 |y∗0 |

1
2

)

×
(

|f(z∗)0| 12 |y∗0 |
1
2

|Φ̃(f(z∗), y∗)| 12

)

=
|Φ̃(z∗, q∗)| 12

|Φ̃(z∗, f−1(q∗))| 12

(
|Φ̃(z∗, y∗)| 12 |Φ̃(f(z∗), q∗)| 12
|Φ̃(f(z∗), y∗)| 12 |Φ̃(z∗, q∗)| 12

)

=
|Φ̃(z∗, y∗)| 12

|Φ̃(z∗, f−1(y∗))| 12 = αy(f, z).

(5) Likewise, we have

αy(f, z) =
|Φ̃(z∗, y∗)| 12

|Φ̃(z∗, f−1(y∗))| 12 =
|Φ̃(z∗, y∗)| 12

|Φ̃(f(z∗), y∗)| 12

= αz(f−1, y).

Put

Ext Iy(f) =
{
z ∈ Hn | αy(f, z) < 1

}
,

Int Iy(f) =
{
z ∈ Hn | αy(f, z) > 1

}
,

respectively. The following facts are easily verified:
(1) y ∈ Ext Iy(f);
(2) f(y) ∈ Int Iy(f−1);
(3) f−1(y) ∈ Int Iy(f).
Suppose that y ∈ Ext I(f). That is,

1 > α∞(f, y) =
|Φ̃(y∗, q∗)| 12

|Φ̃(y∗, f−1(q∗))| 12 =
1

αy(f, f−1(∞))
.

This is true if and only if f−1 ∈ Int Iy(f).　 There-
fore we have

Proposition 2.7. The following (1) and (2)
are equivalent.

(1) y ∈ Ext I(f);
(2) f−1(∞) ∈ Int Iy(f).
It follows from (2) in Proposition 2.6 that

αf(y)(f, z) = αy(f, f−1(z)). Hence just as in the
case of isometric spheres, we have

Proposition 2.8.
(1) If(y)(f) = f(Iy(f)) = Iy(f−1);
(2) f(Ext Iy(f)) ⊂ Int Iy(f−1);
(3) f(Int Iy(f)) ⊂ Ext Iy(f−1).
Next we consider the location of fixed points of

elements.
Proposition 2.9. Let f be an element of

PU(1, n; C) which does not fix ∞. Let x be a fixed
point of f. If f is elliptic or parabolic, then x lies
on both I(f) and I(f−1). If f is loxodromic, then
neither I(f) nor I(f−1) contains x.

Proof. First we consider the case that f is
an elliptic element with only one fixed point x in
Hn. We may assume that x = (1, 0, . . . , 0). Let
f be of the form (aij)1≤i,j≤n+1. Then we have
I(f−1) =

{
z = (z1, z2, . . . , zn) ∈ Hn | |a22 +

a12z1 −∑n+1
j=3 aj2zj−1| = 1

}
. Since f and f−1 fix

(1, 0, . . . , 0),

a11 + a12 = a21 + a22;(2.1)

a22 + a12 = a21 + a11;(2.2)

ak1 + ak2 = 0 (k ≥ 3).(2.3)

It follows from (2.1) and (2.2) that

(2.4) a11 = a22 and a12 = a21.
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We deduce from (2.3), (2.4) and equations (11), (13)
in [6, p. 30] that

−2 Re(a11a12) +
n+1∑
k=3

|ak1|2 = 0;

−|a11|2 − |a12|2 −
n+1∑
k=3

|ak1|2 = −1.

Therefore |a11 + a12| = 1, which implies x =
(1, 0, . . . , 0) ∈ I(f−1). If an elliptic element has more
than one fixed point in Hn, then it has a fixed point
in ∂Hn. Therefore we have only to treat the case
that f has a fixed piont in ∂Hn. Without loss of
generality, we may assume that f has a fixed point
0 = (0, 0, . . . , 0) ∈ ∂Hn. Then f is of the form

f =

λ s −b

0 µ 0
0 −a A

 ,

where a, b and A are (n − 1) × 1, 1 × (n − 1), and
(n − 1) × (n − 1) matrices, respectively. Further-
more, µλ = 1, Re(µs) = (1/2)‖a‖2 and b = λaT A.
Let a = (a1, a2, . . . , an−1)T . We have ρ(f(∞), 0) =
|µs−1|(1/2) and Rf = |s|−(1/2). Hence 0 belongs to
I(f−1) if and only if |µ| = 1, which means that f is
elliptic or parabolic. Let f be elliptic and let x =
(x1, . . . , xn) be its non-zero fixed point. As f−1 fixes
x,

λx1

λ + sx1 +
∑n−1

j=1 ajxj+1

= x1,

which yields sx1 +
∑n−1

j=1 ajxj+1 = 0. Since
I(f−1) =

{
z = (z1, z2, . . . , zn) ∈ Hn

∣∣ |λ + sz1 +∑n−1
j=1 ajzj+1| = 1

}
, the fixed point x of f is con-

tained in the isometric sphere I(f−1). By the same
argument above, we see that x lies on I(f). Thus we
have proved the proposition.

We show that replacing isometric spheres by
generalized isometric spheres leads to the same con-
clusion as in Proposition 2.9.

Proposition 2.10. Let f be an element of
PU(1, n; C) which does not fix either y or ∞. Let
x be a fixed point of f. If f is elliptic or parabolic,
then x lies on both Iy(f) and Iy(f−1). If f is loxo-
dromic, then neither Iy(f) nor Iy(f−1) contains x.

Proof. In a manner similar to Proposition 2.4
of [7], we have

ρ(x, f−1(y)) = ρ(f−1(x), f−1(y))

=
R2

fρ(x, y)
ρ(f(∞), x)ρ(f(∞), y)

.

It follows that

Rfρ(x, y)
ρ(x, f−1(y))ρ(f(∞), y)

=
ρ(f(∞), x)

Rf
.

By using Proposition 2.9, we complete our proof.

3. Fundamental domains. Let G be a dis-
crete subgroup of PU(1, n; C). We define the limit
set L(G) of G as the set of points at which one or-
bit accumulates. The ordinary set Ω(G) of G is de-
fined as the complement of L(G) in Hn. Assume
that ∞ ∈ Ω(G) and its stability subgroup G∞ =
{identity}. Then there is a positive constant M such
that ρ(0, g(∞)) ≤ M for any element g of G. Since
we have Proposition 2.2 as in the case of Möbius
transformations, the same argument as in [4] leads
to the following results.

(1) The radii of isometric spheres are bounded
above.

(2) The number of isometric spheres with radii
exceeding a given positive quantity is finite.

(3) Given any infinite sequence of distinct iso-
metric spheres I(g1), I(g2), . . . , of elements of G, the
radii being Rg1 , Rg2 , . . . , then limm→∞ Rgm = 0.

By using generalized isometric spheres, we can
construct a fundamental domain for a discrete sub-
group of PU(1, n; C) as in the Ford domain (see [1,
4, 8, 9]).

Theorem 3.1. Let G be a discrete subgroup
of PU(1, n; C). Let ∞ be a point of Ω(G) and let
G∞ = {identity}. If y is a point of Ω(G)∩∂Hn such
that Gy consists only of the identity, then

Py(G) =
⋂

f∈G−{id}
Ext Iy(f)

is a fundamental domain for G.
We call Py(G) the generalized Ford domain for

G. Let z1, z2 be two different points in Hn. Let
E(z1, z2) be the bisector of {z1, z2}, that is,

E(z1, z2) = {w ∈ Hn | d(z1, w) = d(z2, w)},
(see [5] for details). Let w be any point of Hn that
is not fixed by any element of G except the identity.
The Dirichlet polyhedron D(w) for G with center w

is defined by

D(w) =
⋂

g∈G−{id}
Hg(w),
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where Hg(w) = {z ∈ Hn | d(z, w) < d(z, g(w))}. We
see that

(1) D(w) is not necessarily convex.
(2) D(w) is star-shaped about w.
(3) D(w) is locally finite.

Details and references for these will be found in
[2, 12].

We observe the relationship between the
Dirichlet polyhedron D(w) and the generalized Ford
domain Py(G).

Theorem 3.2. Let G be a discrete subgroup
of PU(1, n; C). Let z ∈ Hn and let y ∈ ∂Hn∩Ω(G).
Then D(z) → Py(G) as z → y.

To prove Theorem 3.2, we have only to show the
following lemma.

Lemma 3.3. Let f be an element of
PU(1, n; C) with f(y) �= y and f(∞) �= ∞. Then
E(z, f−1(z)) converges to Iy(f) as z → y.

Proof. We have

E(z, f−1(z)) =

{
w ∈ Hn

∣∣∣ |Φ̃(z∗, w∗)|
|Φ̃(z∗, z∗)| 12

=
|Φ̃(f−1(z∗), w∗)|

|Φ̃(f−1(z∗), f−1(z∗))| 12
}

=
{

w ∈ Hn
∣∣∣ |Φ̃(z∗, w∗)|
|Φ̃(f−1(z∗), w∗)|

=
|Φ̃(z∗, z∗)| 12

|Φ̃(f−1(z∗), f−1(z∗))| 12
}

,

where z∗ ∈ π−1(z), w∗ ∈ π−1(w) and f−1(z∗) ∈
π−1(f−1(z)). We see that

|Φ̃(z∗, w∗)|
|Φ̃(f−1(z∗), w∗)| → |Φ̃(y∗, w∗)|

|Φ̃(f−1(y∗), w∗)|
as z → y. Thus E(z, f−1(z)) converges to Iy(f) as
z → y.

From the manner of constructing Py(G), we
have

Corollary 3.4. The fundamental domain
Py(G) is locally finite.
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