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Abstract: The present note studies the existence of unramified quaternion extensions over
quadratic fields, and give an alternative proof of Lemmermeyer’s result. Our method is based on
the theory of embedding problems with restricted ramification.
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1. Introduction. The inverse Galois prob-
lem with unramified conditions is described as fol-
lows: For an algebraic number field K and a fi-
nite group G, to study whether there exists an
unramified Galois extension M/K with the Galois
group isomorphic to G. In case G is abelian, by
class field theory, this problem is closely related to
the ideal class group of K. Lemmermeyer [1] stud-
ied the existence of unramified quaternion extension
over quadratic field and proved the following.

Theorem (Lemmermeyer). Let K be a
quadratic field with discriminant d, and H8 the
quaternion group defined by 〈σ, τ | σ4 = 1, τ2 = σ2,

[σ, τ ] = τ2〉. Then the following assertions are
equivalent:

(1) There exists a Galois extension M/K/Q
such that M/K is unramified at all finite primes and
that Gal(M/K) is isomorphic to H8.

(2) There is a factorization d = d1d2d3 of d into
three quadratic discriminants which are relatively
prime and which satisfy the conditions (d1d2/p3) =
(d2d3/p1) = (d3d1/p2) = +1 for all primes pi | di.

The proof of (1)⇒ (2) is elementary and short
and is based on the Hilbert’s theory of ramification
and group theoretical considerations. But the proof
of converse is long. First we shall study the embed-
ding problem with restricted ramification. And as an
application, we give an alternative proof of (2)⇒ (1).
If the computational group theory will advance, we
hope our method will be applicable to many other
cases.

2. Embedding problems. Let G be the ab-
solute Galois group of Q, and L/Q a finite Galois
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extension with Galois group G. For a central exten-
sion (ε) : 1 → A → E

j→ G → 1, the embedding
problem (L/Q, ε) is defined by the diagram

G

ϕ

�
(ε) : 1 −−−→ A −−−→ E

j−−−−→ G −−−→ 1

where ϕ is the canonical surjection. A solution of
the embedding problem (L/Q, ε) is, by definition, a
continuous homomorphism ψ of G to E such that j ◦
ψ = ϕ. A field M is called a solution field of (L/Q, ε)
if M is corresponding to the kernel of any solution.
When (L/Q, ε) has a solution, we call (L/Q, ε) is
solvable. A solution ψ is called a proper solution if
it is surjective.

For each prime q of Q, we denote by Qq (resp.
Lq) the completion of Q (resp. L) by q (resp. an
extension of q to L). Then the local problem
(Lq/Qq, εq) of (L/Q, ε) is defined by the diagram

Gq

ϕ|Gq

�
(εq) : 1 −−−→ A −−−→ Eq

j|Eq−−−−→ Gq −−−→ 1

where Gq is the Galois group of Lq/Qq, which is
isomorphic to the decomposition group of q in L/Q,
Gq is the absolute Galois group of Qq, and Eq is the
inverse of Gq by j. In the same manner as the case
of (L/Q, ε), solution and proper solution are defined
for (Lq/Qq, εq).

We need some lemmas, which are essential in
the theory of embedding problems. Let L/Q be a 2-
extension and (ε) : 1 → Z/2Z → E → Gal(L/Q) →
1 a central extension.
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Lemma 1 (Neukirch [2]). (L/Q, ε) is solvable
if and only if (Lq/Qq, εq) are solvable for all prime
q ramified in L/Q.

Remark. It is easy to see that if εq splits then
(Lq/Qq, εq) is solvable.

Lemma 2 (Nomura [3]). If (ε) is a non-split
extension, every solution of (L/Q, ε) is a proper so-
lution.

Lemma 3 (Neukirch [2]). Assume that
(L/Q, ε) is solvable. Let S be a finite set of primes
of Q and M(q) a solution field of (Lq/Qq, ε) for
q of S. Then there exists a solution field M of
(L/Q, ε) such that the completion of M by q is equal
to M(q) for each q of S.

We denote by Ram(L/Q) the set of all primes of
Q which are ramified in L/Q. The following is a key
lemma in this note. A similar result can be found in
my preprint [4]. For the convenience of readers, we
shall prove the following.

Proposition 4. Let L/Q be a 2-extension, S
the union of Ram(L/Q) and {2}, and (ε) : 1 →
Z/2Z → E → Gal(L/Q) → 1 a non-split central
extension. We assume that for any prime of S the
local problem (Lq/Qq, εq) has a solution field which
is unramified over Lq. Then there exists a Galois
extension M/L/Q satisfying the conditions

(1) M gives a proper solution of (L/Q, ε),
(2) M/L is unramified at all finite primes.
Proof. By Lemma 1, the embedding problem

(L/Q, ε) is solvable. By virtue of Lemma 2 and
Lemma 3, there exists a Galois extension M ′/L/Q
such that M ′ gives a proper solution and that any
prime of S is unramified in M ′/L. Let pi (i =
1, 2, . . . , t) be the all primes of Q which are rami-
fied in M ′/L. By the choice of M ′, pi is odd for all i.
Let m = ±p1p2 · · · pt, where the sign is determined
by the condition m ≡ 1 (mod 4). Then Q(

√
m)/Q is

unramified outside {p1, . . . , pt}. Let M be the field
such that M ′(

√
m) � M � L, M �= L(

√
m), M �=

M ′.

Q

L

M ′

M

Q(
√
m)

L(
√
m)

M ′(
√
m)

By using the Hilbert’s theory of ramification, it
is easy to see M/L is unramified at all finite primes.
Since (ε) is a central extension, M gives a proper so-
lution of (L/Q, ε). We have thus proved this propo-
sition.

3. Proof of (2) ⇒ (1). Let L = Q(
√
d1,√

d2,
√
d3) and take x, y, z such that

Gal(L/Q(
√
d1,

√
d2)) = 〈x〉,

Gal(L/Q(
√
d2,

√
d3)) = 〈y〉,

Gal(L/Q(
√
d1,

√
d3)) = 〈z〉.

Let Γ be the group 〈ρ, σ, τ | ρ4 = 1, ρ2 = σ2 =
τ2, [ρ, σ] = [ρ, τ ] = 1, [σ, τ ] = ρ2〉 and (ε) : 1 →
〈ρ2〉 → Γ

j→ Gal(L/Q) → 1 a central extension,
where j is defined by j(σ) = xz, j(τ ) = xy, j(ρ) =
xyz.

We claim that the local problem (Lp/Qp, εp) is
solvable for all p ramified in L/Q. We first consider
the case p is a finite prime dividing d1. Denote by Dp

the decomposition field of p in L/Q. Since p is rami-
fied in Q(

√
d1) and totally decomposed in Q(

√
d2d3),

Dp is equal to Q(
√
d2,

√
d3) or Q(

√
d2d3).

Case 1: Dp = Q(
√
d2,

√
d3).

Then Gal(Lp/Qp) = 〈y〉, and ϕ−1(〈y〉) =
〈σρ, ρ2〉 ∼= Z/2Z × Z/2Z. Hence the local exten-
sion (εp) : 1 → 〈ρ2〉 → ϕ−1(〈y〉) → 〈y〉 → 1 splits.
Therefore (Lp/Qp, εp) is solvable.

Case 2: Dp = Q(
√
d2d3).

Then Gal(Lp/Qp) = 〈y, xz〉, and ϕ−1(〈y, xz〉) =
〈σρ, σ, ρ2〉 = 〈σρ, σ〉 ∼= Z/2Z × Z/4Z. Let K1 (resp.
K2) be the subfield of Lp corresponding to 〈y〉 (resp.
〈xz〉). Then K1/Qp is unramified andK2/Qp is ram-
ified. We can take an unramified extension Np/Qp

such that Np ⊃ K1 and that Gal(Np/Qp) ∼= Z/4Z.
Then Mp = NpK2 gives a solution of (Lp/Qp, εp).

We omit the case p divides d2d3, because the
proof is similar to the case above.

Next we consider the case p = ∞. By the
assumption of Legendre’s symbol, it is easy to see
that at most one of the di is negative. Then if
p = ∞ is ramified in L, the decomposition field is
Q(
√
d1,

√
d2), Q(

√
d2,

√
d3) or Q(

√
d3,

√
d1). In this

case the local extension εp splits. Thus (Lp/Qp, εp)
is solvable. Hence we proved the claim.

By virtue of Proposition 4, there exists a Galois
extension M/L/Q such that Gal(M/Q) ∼= Γ and
that M/L is unramified at all finite primes. Then
Gal(M/Q(

√
d)) = 〈σ, τ 〉 ∼= H8. We have thus proved

(2)⇒ (1).
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