A new conjecture concerning the Diophantine equation $x^{2}+b^{y}=c^{z}$

By Zhenfu CaO, ${ }^{*)}$ Xiaolei Dong, ${ }^{* *)}$ and Zhong Li ${ }^{* * *)}$
(Communicated by Shigefumi Mori, M. J. A., Dec. 12, 2002)

Abstract

In this paper, using a recent result of Bilu, Hanrot and Voutier on primitive divisors, we prove that if $a=\left|V_{r}\right|, b=\left|U_{r}\right|, c=m^{2}+1$, and $b \equiv 3(\bmod 4)$ is a prime power, then the Diophantine equation $x^{2}+b^{y}=c^{z}$ has only the positive integer solution $(x, y, z)=(a, 2, r)$, where $r>1$ is an odd integer, $m \in \mathbf{N}$ with $2 \mid m$ and the integers U_{r}, V_{r} satisfy $(m+\sqrt{-1})^{r}=$ $V_{r}+U_{r} \sqrt{-1}$.

Key words: Exponential Diophantine equation; Lucas sequence; primitive divisor; Gauss integer.

1. Introduction. Let $\mathbf{Z}, \mathbf{N}, \mathbf{P}$ and \mathbf{Q} be the sets of integers, positive integers, odd primes and rational numbers respectively, and $\mathbf{P}^{\mathbf{N}}=\left\{p^{n} \mid p \in\right.$ \mathbf{P} and $n \in \mathbf{N}\}$. In 1993, N. Terai [13] conjectured that if (a, b, c) be a primitive Pythagorean triple such that

$$
a^{2}+b^{2}=c^{2}, \quad a, b, c \in \mathbf{N}, \quad \operatorname{gcd}(a, b, c)=1,2 \mid a
$$

then the Diophantine equation

$$
x^{2}+b^{y}=c^{z}, \quad x, y, z \in \mathbf{N}
$$

has the only solution $(x, y, z)=(a, 2,2)$. He proved that if $b, c \in \mathbf{P}$ such that (i) $b^{2}+1=2 c$, (ii) $d=1$ or even if $b \equiv 1(\bmod 4)$, where d is the order of a prime divisor of $[c]$ in the ideal class group of $\mathbf{Q}(\sqrt{-b})$, then his conjecture holds. Later, some further results on Terai's conjecture were published in [8], [2, 3], [15], [5] and [6].

As an analogue of Terai's conjecture, the following new conjecture is considered in [4]:

Conjecture. If $a, b, c, p, q, r \in \mathbf{N}$ are fixed, and

$$
\begin{gather*}
a^{p}+b^{q}=c^{r}, \quad \min (a, b, c, p, q, r) \geq 2 \tag{1}\\
\operatorname{gcd}(a, b)=1,2 \mid a
\end{gather*}
$$

then the Diophantine equation

$$
\begin{equation*}
x^{p}+b^{y}=c^{z}, \quad x, y, z \in \mathbf{N} \tag{2}
\end{equation*}
$$

[^0]has only the solution $(x, y, z)=(a, q, r)$ with $y, z>$ 1.

However, the condition $y, z>1$ of the conjecture is neglected in [4]. We point out that there are some counterexamples if no condition $y, z>1$ in the conjecture. For example, let $\varepsilon=7+4 \sqrt{3}$ and $\bar{\varepsilon}=7-4 \sqrt{3}$. For any positive integer n, let $u_{n}=$ $\left(\varepsilon^{n}+\bar{\varepsilon}^{n}\right) / 2, v_{n}=\left(\varepsilon^{n}-\bar{\varepsilon}^{n}\right) /(2 \sqrt{3})$. Clearly, u_{n} and v_{n} are positive integers satisfying

$$
\begin{equation*}
u_{n}^{2}-3 v_{n}^{2}=1, \quad 2 \mid v_{n} \tag{3}
\end{equation*}
$$

Let

$$
\begin{gather*}
a=8 u_{n}^{3}+3 v_{n}, \quad b=u_{n}, \quad c=u_{n}^{2}+v_{n}^{2} \tag{4}\\
p=2, \quad q=2, \quad r=3
\end{gather*}
$$

By (3) and (4), we get

$$
\begin{aligned}
c^{3} & =\left(u_{n}^{2}+v_{n}^{2}\right)^{3}=\left(4 v_{n}^{2}+1\right)^{3} \\
& =64 v_{n}^{6}+48 v_{n}^{4}+12 v_{n}^{2}+1 \\
& =\left(8 v_{n}^{3}+3 v_{n}\right)^{2}+3 v_{n}^{2}+1 \\
& =\left(8 v_{n}^{3}+3 v_{n}\right)^{2}+u_{n}^{2}=a^{2}+b^{2} .
\end{aligned}
$$

Therefore, the positive integers a, b, c, p, q, r in (4) satisfy (1), but equation (2) has two solutions $(x, y, z)=\left(v_{n}, 2,1\right)$ and $(a, 2,3)$.

It seems that the proof of this conjecture is very difficult. For the case $p=q=2,2 \nmid r>1$, it is proved [4] that if $a=\left|V_{r}\right|, b=\left|U_{r}\right|, c=m^{2}+1$, $b \in \mathbf{P}$ and $b>8 \cdot 10^{6}, b \equiv 3(\bmod 4)$, then the Diophantine equation

$$
\begin{equation*}
x^{2}+b^{y}=c^{z}, \quad x, y, z \in \mathbf{N} \tag{5}
\end{equation*}
$$

has only the solution $(x, y, z)=(a, 2, r)$, where $m \in$ \mathbf{N} with $2 \mid m$ and the integers U_{r}, V_{r} satisfy $(m+$ $\sqrt{-1})^{r}=V_{r}+U_{r} \sqrt{-1}$.

In this paper, using a recent result of Bilu, Hanrot and Voutier [1] on primitive divisors, we prove the following result.

Theorem. Let $r, m \in \mathbf{N}$ with $2 \nmid r>1,2 \mid m$. Define the integers U_{r}, V_{r} by $(m+\sqrt{-1})^{r}=V_{r}+$ $U_{r} \sqrt{-1}$. If $a=\left|V_{r}\right|, b=\left|U_{r}\right|, c=m^{2}+1, b \equiv 3$ $(\bmod 4)$, and $b \in \mathbf{P}^{\mathbf{N}}$, then equation (5) has only the solution $(x, y, z)=(a, 2, r)$.

From the theorem, we have
Corollary. If $m \in \mathbf{N}$ such that $m>1$ and $3 m^{2}-1 \in \mathbf{P}^{\mathbf{N}}$, then the Diophantine equation

$$
x^{2}+\left(3 m^{2}-1\right)^{y}=\left(m^{2}+1\right)^{z}, \quad x, y, z \in \mathbf{N}
$$

has only the solution $(x, y, z)=\left(m^{3}-3 m, 2,3\right)$.
2. Preliminaries. A Lucas pair (resp. a Lehmer pair) is a pair (α, β) of algebraic integers such that $\alpha+\beta$ and $\alpha \beta$ (resp. $(\alpha+\beta)^{2}$ and $\alpha \beta$) are non-zero coprime rational integers and α / β is not a root of unity. For a given Lucas pair (α, β), one defines the corresponding sequence of Lucas numbers by

$$
u_{n}=u_{n}(\alpha, \beta)=\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta} \quad(n=0,1,2, \ldots)
$$

For a given Lehmer pair (α, β), one defines the corresponding sequence of Lehmer numbers by

$$
\widetilde{u}_{n}=\widetilde{u}_{n}(\alpha, \beta)= \begin{cases}\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta} & \text { if } n \text { is odd } \\ \frac{\alpha^{n}-\beta^{n}}{\alpha^{2}-\beta^{2}} & \text { if } n \text { is even. }\end{cases}
$$

It is clear that every Lucas pair (α, β) is also a Lehmer pair, and

$$
u_{n}= \begin{cases}\widetilde{u}_{n} & \text { if } n \text { is odd } \\ (\alpha+\beta) \widetilde{u}_{n} & \text { if } n \text { is even }\end{cases}
$$

Let (α, β) be a Lucas (resp. Lehmer) pair. The prime number p is a primitive divisor of the Lucas (resp. Lehmer) number $u_{n}(\alpha, \beta)$ (resp. $\left.\widetilde{u}_{n}(\alpha, \beta)\right)$ if p divides u_{n} but does not divide $(\alpha-\beta)^{2} u_{1} \cdots u_{n-1}$ (resp. if p divides \widetilde{u}_{n} but does not divide $\left(\alpha^{2}-\right.$ $\left.\beta^{2}\right)^{2} \widetilde{u}_{1} \cdots \widetilde{u}_{n-1}$). The following lemmas are classical.

Lemma 1. Let (α, β) be a Lucas (resp. Lehmer) pair. If the prime number p is a primitive divisor of the Lucas (resp. Lehmer) number $u_{n}(\alpha, \beta)$ $\left(\right.$ resp. $\left.\widetilde{u}_{n}(\alpha, \beta)\right)$, then $n \equiv \pm 1(\bmod p)$.

Lemma 2. If $u_{m} \neq 1$, then $u_{m} \mid u_{n}$ iff $m \mid n$.
Proof. For example, see W. L. McDaniel [11].

Recently, Y. Bilu, G. Hanrot and P. Voutier [1] proved the following

Lemma 3. For any integer $n>30$, every n th term of any Lucas or Lehmer sequence has a primitive divisor.

A Lucas (resp. Lehmer) pair (α, β) such that $u_{n}(\alpha, \beta)$ (resp. $\left.\widetilde{u}_{n}(\alpha, \beta)\right)$ has no primitive divisors will be called n-defective Lucas (resp. Lehmer) pair. Two Lucas pairs $\left(\alpha_{1}, \beta_{1}\right)$ and $\left(\alpha_{2}, \beta_{2}\right)$ are equivalent if $\left(\alpha_{1} / \alpha_{2}\right)=\left(\beta_{1} / \beta_{2}\right)= \pm 1$. Two Lehmer pairs $\left(\alpha_{1}, \beta_{1}\right)$ and $\left(\alpha_{2}, \beta_{2}\right)$ are equivalent if

$$
\frac{\alpha_{1}}{\alpha_{2}}=\frac{\beta_{1}}{\beta_{2}} \in\{ \pm 1, \pm \sqrt{-1}\}
$$

In 1995, P. Voutier [14] proved the following
Lemma 4. Let n satisfy $4<n \leq 30$ and $n \neq$ 6. Then, up to equivalence, all n-defective Lucas pairs are of form $((a-\sqrt{b}) / 2,(a+\sqrt{b}) / 2)$, where (a, b) are given in Table 1 of [1].

Let n satisfy $6<n \leq 30$ and $n \notin\{8,10,12\}$. Then, up to equivalence, all n-defective Lehmer pairs are of form $((\sqrt{a}-\sqrt{b}) / 2,(\sqrt{a}+\sqrt{b}) / 2)$, where (a, b) are given in Table 2 of [1].

In [1], for any positive integer $n \leq 30$, all Lucas sequences and all Lehmer sequences whose n-th term has no primitive divisor are explicitely determined. i.e., Y. Bilu, G. Hanrot and P. Voutier [1] proved also the following

Lemma 5. Any Lucas pair is 1-defective, and any Lehmer pair is 1-and 2-defective.

For $n \in\{2,3,4,6\}$, all (up to equivalence) n defective Lucas pairs are of form $((a-\sqrt{b}) / 2,(a+$ $\sqrt{b}) / 2$), where (a, b) are given in Table 3 of [1].

For $n \in\{3,4,5,6,8,10,12\}$, all (up to equivalence) n-defective Lehmer pairs are of form ($(\sqrt{a}-$ $\sqrt{b}) / 2,(\sqrt{a}+\sqrt{b}) / 2)$, where (a, b) are given in Table 4 of [1].

We will use the following Lemmas to prove the theorem.

Lemma 6. Let $r, m \in \mathbf{N}$ with $2 \nmid r>1,2 \mid$ m. Define the integers U_{r}, V_{r} by $(m+\sqrt{-1})^{r}=V_{r}+$ $U_{r} \sqrt{-1}$. If $a=\left|V_{r}\right|, b=\left|U_{r}\right|, c=m^{2}+1, b \equiv$ $3(\bmod 4)$, and $b \in \mathbf{P}^{\mathbf{N}}$, then equation (5) has no solution (x, y, z) with $2 \mid z$.

Proof. See the proof of Theorem in [4].
Lemma 7. If $2 \nmid r$ and $r>1$, then all solutions (X, Y, Z) of the equation

$$
X^{2}+Y^{2}=Z^{r}, \quad X, Y, Z \in \mathbf{Z}, \quad \operatorname{gcd}(X, Y)=1
$$

are given by
$X+Y \sqrt{-1}=\lambda_{1}\left(X_{1}+\lambda_{2} Y_{1} \sqrt{-1}\right)^{r}, \quad Z=X_{1}^{2}+Y_{1}^{2}$, where
$\lambda_{1}, \lambda_{2} \in\{-1,1\}, \quad X_{1}, Y_{1} \in \mathbf{N}$ and $\operatorname{gcd}\left(X_{1}, Y_{1}\right)=1$.
Lemma 7 follows directly from a theorem in the book of Mordell [12] pp. 122-123.

Lemma 8. The Diophantine equation

$$
x^{2}-\lambda=y^{n}, \quad n>1, \quad \lambda= \pm 1
$$

has only solution in positive integers $x=3, y=2$, $n=3, \lambda=1$.

It follows from [7, 9] that the only solution of the equation $x^{2}-1=y^{n}(n>1)$ in positive integers is $(x, y, n)=(3,2,3)$, the equation $x^{2}+1=y^{n}(n>$ 1) has no solutions in positive integers, respectively. Hence Lemma 8 holds.
3. Proof of Theorem. Since $b \equiv 3(\bmod 4)$ and $c \equiv 1(\bmod 4)$, we have from (5) that $2 \mid x$ and so $3^{y} \equiv 1(\bmod 4)$, that is, $2 \mid y$. Hence, we can assume that $y=2 y_{1}, y_{1} \in \mathbf{N}$ and $2 \nmid z$ by Lemma 6. Furthermore, since $b \in \mathbf{P}^{\mathbf{N}}$, we have
$\binom{r}{1} m^{r-3}-\binom{r}{3} m^{r-5}+\cdots+(-1)^{(r-3 / 2)}\binom{r}{r-2} \neq 0$
and so

$$
\begin{aligned}
b= & \left\lvert\, m^{2}\left(\binom{r}{1} m^{r-3}-\binom{r}{3} m^{r-5}+\cdots\right.\right. \\
& \left.+(-1)^{(r-3 / 2)}\binom{r}{r-2}\right)+(-1)^{(r-1 / 2)} \mid \\
\geq & m^{2} \left\lvert\,\binom{ r}{1} m^{r-3}-\binom{r}{3} m^{r-5}+\cdots\right. \\
& \left.+(-1)^{(r-3 / 2)}\binom{r}{r-2} \right\rvert\,-1 \\
\geq & m^{2}-1=c-2
\end{aligned}
$$

that is, $b \geq c-2$. It follows that $z>1$ by equation (5). So, we also can assume that $p \mid z, p \in \mathbf{P}$. Hence,
(5) gives that
(6) $x^{2}+b^{2 y_{1}}=\left(c^{z / p}\right)^{p}, \quad x, y_{1} \in \mathbf{N}, \quad p \in \mathbf{P}$.

Clearly, $\operatorname{gcd}(b, c)=\operatorname{gcd}(x, b)=1$. By Lemma 7, we have from (6) that

$$
\begin{align*}
& x+b^{y_{1}} \sqrt{-1}=\lambda_{1}\left(X+\lambda_{2} Y \sqrt{-1}\right)^{p} \tag{7}\\
& c^{z / p}=X^{2}+Y^{2}
\end{align*}
$$

where $\lambda_{1}, \lambda_{2} \in\{-1,1\}, X, Y \in \mathbf{N}$ and $\operatorname{gcd}(X, Y)=$ 1. It follows from (7) that
(8) $b^{y_{1}}=\lambda_{1} \lambda_{2} Y \frac{\alpha^{p}-\beta^{p}}{\alpha-\beta}$

$$
\begin{gathered}
=\lambda_{1} \lambda_{2} Y\left(\binom{p}{1} X^{p-1}-\binom{p}{3} X^{p-3} Y^{2}+\cdots\right. \\
\left.+(-1)^{(p-1 / 2)}\binom{p}{p} Y^{p-1}\right)
\end{gathered}
$$

where $\alpha=X+\lambda_{2} Y \sqrt{-1}, \beta=X-\lambda_{2} Y \sqrt{-1}$. Clearly, (8) gives

$$
\begin{equation*}
\left(Y, \frac{\alpha^{p}-\beta^{p}}{\alpha-\beta}\right)=1 \text { or } p \tag{9}
\end{equation*}
$$

since $\operatorname{gcd}(X, Y)=1$.
If $Y=1$, then from the last equality of (7) and Lemma 8, we obtain $z=p, X=m$ and so $\left|U_{r}\right|^{y_{1}}=$ $\left|U_{p}\right|$ by (8). By Lemma 2, we have $r=p$ and so $y_{1}=1, z=r$, that is, the theorem holds.

If $Y>1$, since $b \in \mathbf{P}^{\mathbf{N}}$ and

$$
p \| \frac{\alpha^{p}-\beta^{p}}{\alpha-\beta} \text { if } p \left\lvert\, \frac{\alpha^{p}-\beta^{p}}{\alpha-\beta}\right.
$$

we see from (8) and (9) that

$$
\begin{equation*}
\left|\frac{\alpha^{p}-\beta^{p}}{\alpha-\beta}\right|=1 \quad \text { or } p \tag{10}
\end{equation*}
$$

Clearly, $\left(\alpha^{p}-\beta^{p}\right) /(\alpha-\beta)$ is p-th term of Lucas sequence. And from (10) and Lemma 1, we have that $\left(\alpha^{p}-\beta^{p}\right) /(\alpha-\beta)$ has no primitive divisor. Hence, using Lemmas 3-5 and Tables 1 and 3 in [1], and note that $p \in \mathbf{P}$, we get the following 4 cases:

Case I: $\quad p=5$ and

$$
\begin{aligned}
\left(2 X,-4 Y^{2}\right) \in & \{(1,5),(1,-7),(2,-40),(1,-11) \\
& (1,-15),(12,-76),(12,-1364)\}
\end{aligned}
$$

But this is impossible since $Y \in \mathbf{N}$.
Case II: $\quad p=7$ and

$$
\left(2 X,-4 Y^{2}\right) \in\{(1,-7),(1,-19)\}
$$

Clearly, this also is impossible.
Case III: $\quad p=13$ and $\left(2 X,-4 Y^{2}\right)=(1,-7)$ which is impossible.

Case IV: $\quad p=3,\left(2 X,-4 Y^{2}\right)=\left(u,-3 u^{2}+4 \lambda\right)$, $u>1$ or $\left(u,-3 u^{2}+4 \lambda \cdot 3^{l}\right), 3 \nmid u,(l, u) \neq(1,2)$, where $\lambda \in\{-1,1\}, l, u \in \mathbf{N}$.

If $\left(2 X,-4 Y^{2}\right)=\left(u,-3 u^{2}+4 \lambda\right), u>1$, then $Y^{2}=3 X^{2}-\lambda$ and from the last equality of (7), we obtain $4 X^{2}-\lambda=c^{z / 3}$. It follows by Lemma 8 that $z=3$. Notice that $c=m^{2}+1$. We have $\lambda=-1$, $m=2 X$ and

$$
\begin{equation*}
Y^{2}-3 X^{2}=1 \tag{11}
\end{equation*}
$$

By $p=3$ and (11), we obtain $\left(\alpha^{p}-\beta^{p}\right) /(\alpha-\beta)=$ -1 . So, we get from (8) that $Y=b^{y_{1}}$. However, from $b \geq c-2$ and the last equality of (7), we can obtain $c=X^{2}+Y^{2} \geq 1+b^{2} \geq 1+(c-2)^{2}>c$, a contradiction.

If $\left(2 X,-4 Y^{2}\right)=\left(u,-3 u^{2}+4 \lambda \cdot 3^{l}\right), 3 \nmid u,(l, u) \neq$ $(1,2)$, then

$$
\begin{equation*}
Y^{2}=3 X^{2}-\lambda \cdot 3^{l} \tag{12}
\end{equation*}
$$

and so
(13) $\quad\left(\alpha^{p}-\beta^{p}\right) /(\alpha-\beta)=\lambda \cdot 3^{l}($ note that $p=3)$.

From (8) and (13), we get $Y=3^{t}, t \in \mathbf{N}$ and $l=1$ since $3 \|\left(\alpha^{3}-\beta^{3}\right) /(\alpha-\beta)$. Substituting $l=1$ and $Y=3^{t}$ into (12), we have $3^{2 t-1}=X^{2}-\lambda$ and so $X=$ $2, Y=3$. Substituting these into the last equality of (7), we have $13=c^{z / 3}$ which is impossible since $c=m^{2}+1$.

This proves Theorem.
Acknowledgement. This project was supported by China Postdoctoral Science Foundation and the National Natural Science Foundation of China.

References

[1] Bilu, Y., Hanrot, G., and Voutier, P. (with an appendix by Mignotte, M.): Existence of primitive divisors of Lucas and Lehmer numbers. J. Reine Angew. Math., 539, 75-122 (2001).
[2] Cao, Z., and Dong, X.: On Terai's conjecture. Proc. Japan Acad., 74A, 127-129 (1998).
[3] Cao, Z., and Dong, X.: Some new results on Terai's conjecture. J. Harbin Inst. Tech. New Ser., 5, pp. 1-3 (1998).
[4] Cao, Z., and Dong, X.: The Diophantine equation $x^{2}+b^{y}=c^{z}$. Proc. Japan Acad., 77A, 1-4 (2001).
[5] Chen, X., and Le, M.: A note on Terai's conjecture concerning Pythagorean numbers. Proc. Japan Acad., 74A, 80-81 (1998).
[6] Dong, X.: Diophantine equations and class numbers of quadratic fields. Ph. D. Thesis, Harbin Institute of Technology, Ch. 4 (2001).
[7] Ko, C.: On the Diophantine equation $x^{2}=y^{n}+1$, $x y \neq 0$. Sci. Sin., 14, 457-460 (1964).
[8] Le, M.: A note on the Diophantine equation $x^{2}+$ $b^{y}=c^{z}$. Acta Arith., 71, 253-257 (1995).
[9] Lebesgue, V. A.: Sur l'impossibilitéon nombres entiers de l'équation $x^{m}=y^{2}+1$. Nouv. Ann. Math., 9 (1), 178-181 (1850).
[10] Ljunggren, W.: Zur Theorie der Gleichung $x^{2}+$ $1=D y^{4}$. Avh. Norske Vid. Akad. Oslo, 5, 1-27 (1942).
[11] McDaniel, W. L.: The g.c.d. in Lucas sequences and Lehmer number sequences. Fibonacci Quart., 29, 24-29 (1991).
[12] Mordell, L. J.: Diophantine Equations. Academic Press, New York-London (1969).
[13] Terai, N.: The Diophantine equation $x^{2}+q^{m}=$ p^{n}. Acta Arith., 63 (4), 351-358 (1993).
[14] Voutier, P.: Primitive divisors of Lucas and Lehmer sequences. Math. Comp., 64, 869-888 (1995).
[15] Yuan, P., and Wang, J.: On the Diophantine equation $x^{2}+b^{y}=c^{z}$. Acta Arith., 84, 145-147 (1998).

[^0]: 1991 Mathematics Subject Classification. 11D61.
 *) Department of Computer Science, Shanghai Jiao Tong University, Shanghai 200030, P. R. China.
 ${ }^{* *)}$ Department of Mathematics, Shanghai Jiao Tong University, Shanghai 200030, P. R. China.
 ***) Department of Mathematics, Maoming College, Maoming, Guangdong, P. R. China.

