Homotopy groups of the homogeneous spaces $\boldsymbol{F}_{4} / \boldsymbol{G}_{2}, \boldsymbol{F}_{4} / \operatorname{Spin}(9)$ and $\boldsymbol{E}_{6} / \boldsymbol{F}_{4}$

By Yoshihiro Hirato, ${ }^{*)}$ Hideyuki Kachi, ${ }^{* *)}$ and Mamoru Miura***)
(Communicated by Heisuke Hironaka, m. J. a., Jan. 12, 2001)

Abstract

In the paper we calculate 2-primary components of homotopy groups of the hmogeneous spaces $F_{4} / G_{2}, F_{4} / \operatorname{Spin}(9)$ and E_{6} / F_{4}.

Key words: Homotopy group; homogeneous space; exceptional Lie group.

1. Introduction. Let G_{2}, F_{4} and E_{6} be the compact, connected, simply connected, simple, exceptional Lie groups of rank 2, 4 and 6 respectively. We consider the homogeneous spaces F_{4} / G_{2}, $F_{4} / \operatorname{Spin}(9)=\Pi$ and E_{6} / F_{4}, where Π denotes the Cayley projective plane. We denote by $\pi_{i}(X: p)$ the p-primary component of $\pi_{i}(X)$. In this paper we calculate homotopy groups $\pi_{i}\left(F_{4} / G_{2}: 2\right), \pi_{i}(\Pi: 2)$ ans $\pi_{i}\left(E_{6} / F_{4}: 2\right)$ for $i \leq 45, i \leq 38$ and $i \leq 30$ respectively. The caleulations of $\pi_{i}\left(F_{4} / G_{2}: 2\right)$ and $\pi_{i}(\Pi: 2)$ will be done by making use of the homotopy exact sequences associated with the 2-local fibration

$$
S^{15} \longrightarrow F_{4} / G_{2} \longrightarrow S^{23}
$$

and the fibration

$$
S^{7} \longrightarrow \Omega \Pi \longrightarrow \Omega S^{23}
$$

given by Davis and Mahowald [3]. The calculation of $\pi_{i}\left(E_{6} / F_{4}: 2\right)$ will be done by making use of the 2-local fibration

$$
X \longrightarrow S^{9} \longrightarrow E_{6} / F_{4}
$$

where X is the homotopy fibre of the natural inclusion of S^{9} in E_{6} / F_{4}. To determine the group extension we use the following theorem which is proved by Mimura and Toda [10].

Theorem 1.1 (Theorem 2.1 of [10]). Let
(X, p, B) be a fibration with the fibre $F\left(=p^{-1}(*)\right)$ and Δ the boundary homomorphism of the homo-

[^0]topy exact sequence associated with the fibration. Assume that $\alpha \in \pi_{i+1}(B), \beta \in \pi_{j}\left(S^{i}\right)$ and $\gamma \in \pi_{k}\left(S^{j}\right)$ satisfy the conditions $(\Delta(\alpha)) \beta=0$ and $\beta \gamma=0$. For an arbitrary element δ of Toda bracket $\{\Delta(\alpha), \beta, \gamma\} \subset \pi_{k+1}(F)$, there exists an element $\varepsilon \in \pi_{j+1}(X)$ such that
$$
p_{*} \varepsilon=\alpha E \beta, \quad i_{*} \delta=\varepsilon E \gamma,
$$
where $i: F \rightarrow X$ is an inclusion map.
The notations and the terminologies in [6], [7], [9], [10], [11], [12], [14], [16] will be freely used in the present paper, and we also omit for simplicity the notation \circ indicating composition.

The results in the present pater shall be used to deduce $\pi_{i}\left(F_{4}\right)$ adn $\pi_{i}\left(E_{6}\right)$ in the forthcoming paper.
2. Homotopy groups of $\boldsymbol{F}_{\mathbf{4}} / \boldsymbol{G}_{\mathbf{2}}$. We consider the 2-local fibration

$$
S^{15} \xrightarrow{i} F_{4} / G_{2} \xrightarrow{p} S^{23}
$$

which is given by Davis and Mahowald [3]. Then we have the homotopy exact sequence

$$
\begin{aligned}
& \cdots \longrightarrow \pi_{i+1}\left(S^{23}: 2\right) \xrightarrow{\Delta i+1} \pi_{i}\left(S^{15}: 2\right) \\
& \xrightarrow{i_{*}} \pi_{i}\left(F_{4} / G_{2}: 2\right) \xrightarrow{p_{*}} \pi_{i}\left(S^{23}: 2\right) \xrightarrow{\Delta_{i}} \cdots
\end{aligned}
$$

associated with the above 2-local fibration. This exact sequence induces an exact one:
(1) $0 \rightarrow$ Coker $\Delta_{i+1} \xrightarrow{i_{*}} \pi_{i}\left(F_{4} / G_{2}: 2\right) \xrightarrow{p_{*}} \operatorname{Ker} \Delta_{i} \rightarrow 0$.

Since $H^{*}\left(F_{4} / G_{2} ; \mathbf{Z}_{2}\right) \cong \wedge\left(x_{15}, S q^{8} x_{15}\right)([1])$, we have the 2-local equivalence

$$
F_{4} / G_{2} \underset{2}{\simeq} S^{15}{\underset{\sigma}{15}}^{\cup} e^{23} \cup e^{38} .
$$

Here we have the formulas
(2) $\quad \Delta_{23}\left(\iota_{23}\right)=\sigma_{15} \quad$ and $\quad \Delta_{i}(E \alpha)=\sigma_{15} \alpha$
where ι_{23} is the homotopy class of the identity map of S^{23} and $\alpha \in \pi_{i-1}\left(S^{22}: 2\right)$. By making use of the formula (2), we calculate the kernel and the cokernel
of the boundary homomorphism $\Delta_{i}: \pi_{i}\left(S^{23}: 2\right) \rightarrow$ $\pi_{i-1}\left(S^{15}: 2\right)$. The results are stated in the following.

Lemma 2.1. We have the following table of the kernel and the cokernel of Δ_{i}.

i		24	25	26	27	28	29
$\operatorname{Ker} \Delta_{i}$		0	0	8	0	0	2
Coker Δ_{i+1}		$(2)^{2}$	2	8	0	0	2
31		32	33		34		35
4 (2)	$(2)^{2}$	$(2)^{2}$	0		8		0
$32+2 \quad(2)$	$(2)^{2}$	$(2)^{4}$	$(8)^{2}+2$	$8+(2)^{2}$			8
$36 \quad 37$	37	38		39		40	
$0 \quad 2$	2	$16+2$		2		$(2)^{2}$	
$(2)^{2} \quad 8+(2$	$8+(2)^{3}$	$16+8+(2)^{3}$		$(2)^{4}$		$(2)^{3}$	
41	42	43	44		45		
28	$8+2$	8	$(2)^{2}$		$2)^{2}$		
$8+(2)^{2}$	$)^{2} \quad 8$	2	2		(2) ${ }^{2}$		

Here an integer n indicates a cyclic group \mathbf{Z}_{n} of order n, the symbol ∞ an infinite eyelie group \mathbf{Z}, the symbol + the direct sum of groups and $(n)^{k}$ indicates the direct sum of k-copies of \mathbf{Z}_{n}.

Let us state our first main result.
Theorem 2.2. We have the following table of the homotopy groups $\pi_{i}\left(F_{4} / G_{2}: 2\right)$ for $i \leq 45$.

i	$i \leq 14$	$15 \quad 16$	$16 \quad 17$	18
$\pi_{i}\left(F_{4} / G_{2}: 2\right)$	0	$\infty \quad 2$	22	8
19,20 $\quad 21 \quad 22$	23	24	25	26
$0 \quad 20$) \quad + 2	$2(2)^{2}$	$2{ }^{2}$	64
27, $28 \quad 29$	30	31	32	33
$0 \quad(2)^{2}$	$128+2$	$(2)^{4}$	$(2)^{6}$	$(8)^{2}+2$
$34 \quad 35$	36	37		
$64+(2)^{2} \quad 8$	$(2)^{2} \quad 8$	$8+4+(2)^{2}$		
38	39	40	41	42
$256+8+(2)^{4}$	(2) ${ }^{5}$	$(2)^{5} \quad 8$	$8+4+$	2 $64+2$
$43 \quad 44$	45			
$8+2 \quad(2)^{3} \quad 8$	$8+(2)^{4}$			

Proof. From Lemma 2.1, it follows that the homomorphisms i_{*} : Coker $\Delta_{i+1} \rightarrow \pi_{i}\left(F_{4} / G_{2}: 2\right)$ are
isomorphisms for $i \leq 22$ and $i=24,25,27,28,33$, 35, 36.

We remark that $\pi_{27}\left(F_{4} / G_{2}: 2\right)=\pi_{28}\left(F_{4} / G_{2}:\right.$ 2) $=0$.

Consider the case $i=26$. By Lemma 2.1 and the exact sequence (1), we have an exact sequence

$$
0 \longrightarrow \mathbf{Z}_{8} \xrightarrow{i_{*}} \pi_{26}\left(F_{4} / G_{2}: 2\right) \xrightarrow{p_{*}} \mathbf{Z}_{8} \longrightarrow 0
$$

where the first \mathbf{Z}_{8} is generated by ζ_{15} and the second \mathbf{Z}_{8} is generated by ν_{23}. For the Toda bracket, we have

$$
\left\{\sigma_{15}, \nu_{23}, 8 \iota_{25}\right\} \ni x \zeta_{15}
$$

for some old integer x. By Theorem 1.1, these exists an element $\left[\nu_{23}\right] \in \pi_{26}\left(F_{4} / G_{2}: 2\right)$ such that

$$
p_{*}\left(\left[\nu_{23}\right]\right)=\nu_{23} \quad \text { and } \quad i_{*}\left(x \zeta_{15}\right)=8\left[\nu_{23}\right] .
$$

Therefore we obtain $\pi_{26}\left(F_{4} / G_{2}: 2\right)=\left\{\left[\nu_{23}\right]\right\} \cong \mathbf{Z}_{64}$.
For $i=30,34,37,38,41,42$, we obtain the results of $\pi_{i}\left(F_{4} / G_{2}: 2\right)$ by an argument similar to the case $i=26$.

Consider the case $i=29$. By Lemma 2.1 and the exact sequence (1), we have an exact sequence

$$
0 \longrightarrow \mathbf{Z}_{2} \xrightarrow{i_{*}} \pi_{29}\left(F_{4} / G_{2}: 2\right) \xrightarrow{p_{*}} \mathbf{Z}_{2} \longrightarrow 0
$$

where the first \mathbf{Z}_{2} is generated by κ_{15} and the second \mathbf{Z}_{2} is generated by ν_{23}^{2}. We consider $\left[\nu_{23}\right] \nu_{26}$. We have

$$
\begin{aligned}
2\left(\left[\nu_{23}\right] \nu_{26}\right) & =\left[\nu_{23}\right] E^{23} \nu^{\prime} & & \text { by }(5.5) \text { of }[16] \\
& \in\left[\nu_{23}\right]\left\{\eta_{26}, 2 \iota_{27}, \eta_{27}\right\} & & \text { by the definition } \\
& \subset\left\{\left[\nu_{23}\right] \eta_{26}, 2 \iota_{27}, \eta_{27}\right\} . & & \text { of } \nu^{\prime}([16])
\end{aligned}
$$

Since $\pi_{27}\left(F_{4} / G_{2}: 2\right)=\pi_{28}\left(F_{4} / G_{2}: 2\right)=0$, we have $\left\{\left[\nu_{23}\right] \eta_{26}, 2 \iota_{27}, \eta_{27}\right\}=\left\{0,2 \iota_{27}, \eta_{27}\right\} \equiv 0 \bmod 0$. Therefore we have

$$
2\left(\left[\nu_{23}\right] \nu_{26}\right)=0
$$

Moreover we have

$$
\left.p_{*}\left(\left[\nu_{23}\right] \nu_{26}\right)=\left(p_{*} \nu_{23}\right]\right) \nu_{26}=\nu_{23}^{2} .
$$

This implies that the above sequence splits.
For $i=31,32,39,40,43,44,45$, we obtain the results of $\pi_{i}\left(F_{4} / G_{2}: 2\right)$ by an argument similar to the case $i=29$.
3. Homotopy groups of $\Pi=F_{4} / \operatorname{Spin}(9)$. We consider the fibration

$$
S^{7} \xrightarrow{i} \Omega \Pi \xrightarrow{p} \Omega S^{23}
$$

which is given by Davis and Mahowald [3]. Then we have the homotopy exact sequence

$$
\begin{aligned}
& \cdots \longrightarrow \pi_{i+1}\left(\Omega S^{23}: 2\right) \xrightarrow{\Delta_{i+1}} \pi_{i}\left(S^{7}: 2\right) \\
& \xrightarrow{i_{*}} \pi_{i}(\Omega \Pi: 2) \xrightarrow{p_{*}} \pi_{i}\left(\Omega S^{23}: 2\right) \xrightarrow{\Delta_{i}} \cdots
\end{aligned}
$$

associated with the above fibration. This exact sequence induces an exact one:
(3) $0 \rightarrow \operatorname{Coker} \Delta_{i+1} \xrightarrow{i_{*}} \pi_{i}(\Omega \Pi: 2) \xrightarrow{p_{*}} \operatorname{Ker} \Delta_{i} \rightarrow 0$.

By Davis-Mahowald [3] and Mimura [8], we have the 2-local equivalence

$$
\Omega \Pi \underset{2}{\simeq} S^{7} \underset{\sigma^{\prime} \sigma_{14}}{\cup} e^{22} \cup e^{29} \cup \cdots .
$$

Here we have the formulas
(4) $\Delta_{22} \operatorname{ad}\left(\iota_{23}\right)=\sigma^{\prime} \sigma_{14}$ and $\Delta_{i} \operatorname{ad}\left(E^{2} \alpha\right)=\sigma^{\prime} \sigma_{14} \alpha$, where ad : $\pi_{23}\left(S^{23}: 2\right) \rightarrow \pi_{22}\left(\Omega S^{23}: 2\right)$ is the adjoint isomorphism and $\alpha \in \pi_{i-2}\left(S^{21}: 2\right)$. By making use of the formula (4), we calculate the kernel and the cokernel of the boundary homomorphism $\Delta_{i}: \pi_{i}\left(\Omega S^{23}: 2\right) \rightarrow \pi_{i-1}\left(S^{7}: 2\right)$. The results are stated in the following.

Lemma 3.1. We have the following table of the kernel and the cokernel of Δ_{i}.

i	22	23	24	25
Ker Δ_{i}	∞	0	0	8
Coker Δ_{i+1}	$8+(2)^{2}$	$(2)^{3}$	$(2)^{4}$	$8+2$

26	27	28	29	30	31
0	0	2	16	$(2)^{2}$	$(2)^{2}$
$8+2$	8	$(2)^{2}$	$8+(2)^{3}$	$(8)^{2}+(2)^{3}$	$(2)^{6}$

32	33	34	35
0	8	0	0
$8+4+(2)^{3}$	$8+(2)^{6}$	$(8)^{2}+2$	$(2)^{4}$
36	37		
$(2)^{2}$	$32+2$		
$8+(2)^{4}$	$(8)^{2}+(2)^{2}$		

Theorem 3.2. We have the following table of the homotopy groups $\pi_{i}(\Pi: 2)$ for $i \leq 38$.

i	$i \leq 7$	8	9	10	11	12,13
$\pi_{i}(\Pi: 2)$	0	∞	2	2	8	0

14	15	16	17	18	19	20	21
2	8	$(2)^{3}$	$(2)^{4}$	$8+2$	$8+2$	0	2

22	23	24	25	26				
4	$\infty+8+(2)^{2}$	$(2)^{3}$	$(2)^{4}$	$64+2$				
27	28	29	30	31				
$8+2$	8	$(2)^{3}$	$128+(2)^{3}$	$(8)^{2}+(2)^{5}$				
				36				
32	33	34	35	36				
$(2)^{8}$	$8+4+(2)^{3}$	$64+(2)^{6}$	$(8)^{2}+2$	$(2)^{4}$				
37						38		
$16+4+(2)^{3}$	$256+8+(2)^{3}$							

Proof. From Lemma 3.1, it follows that the homomorphism i_{*} : Coker $\Delta_{i+1} \rightarrow \pi_{i}(\Omega \Pi: 2)$ are isomorphisms for $i \leq 21$ and $i=23,24,26,27,32,34$, 35.

Consider the case $i=25$. By Lemma 3.1 and the exact sequence (3), we have an exact sequence

$$
0 \longrightarrow \mathbf{Z}_{8} \oplus \mathbf{Z}_{2} \xrightarrow{i_{*}} \pi_{25}(\Omega \Pi: 2) \xrightarrow{p_{*}} \mathbf{Z}_{8} \longrightarrow 0
$$

where $\mathbf{Z}_{8} \oplus \mathbf{Z}_{2}$ is gencrated by $\zeta_{7} \sigma_{18}, \eta_{7} \bar{\mu}_{8}$ and \mathbf{Z}_{8} is generated by $\operatorname{ad}\left(\nu_{23}\right)$. For the Toda bracket, we have

$$
\left\{\sigma^{\prime} \sigma_{14}, \nu_{21}, 8 \iota_{24}\right\} \ni x \zeta_{7} \sigma_{18}
$$

for some odd integer x. By Theorem 1.1, there exists an element $\left[\nu_{23}\right] \in \pi_{25}(\Omega \Pi: 2)$ such that

$$
p_{*}\left(\left[\nu_{23}\right]\right)=\operatorname{ad}\left(\nu_{23}\right) \quad \text { and } \quad i_{*}\left(x^{\prime \prime} \zeta_{7} \sigma_{18}\right)=8\left[\nu_{23}\right] .
$$

Therefore we have $\pi_{25}(\Omega \Pi: 2) \cong \mathbf{Z}_{64} \oplus \mathbf{Z}_{2}$.
For $i=29,33,36,37$, we obtain the results of $\pi_{i}(\Omega \Pi: 2)$ by an argument similar to the case $i=25$.

Consider the case $i=28$. By Lemma 3.1 and the exact sequence (3), we have an exact sequence

$$
0 \longrightarrow \mathbf{Z}_{2} \oplus \mathbf{Z}_{2} \xrightarrow{i_{*}} \pi_{28}(\Omega \Pi: 2) \xrightarrow{p_{*}} \mathbf{Z}_{2} \longrightarrow 0
$$

where $\mathbf{Z}_{2} \oplus \mathbf{Z}_{2}$ is generated by $\eta_{7} \bar{\kappa}_{8}, \sigma^{\prime} \kappa_{14}$ and \mathbf{Z}_{2} is generated by $\operatorname{ad}\left(\nu_{23}^{2}\right)$. For the Toda bracket, we have

$$
\left\{\sigma^{\prime} \sigma_{14}, \nu_{21}^{2}, 2 \iota_{27}\right\}=0
$$

By Theorem 1.1, there exists an element $\varepsilon \in$ $\pi_{28}(\Omega \Pi: 2)$ such that $p_{*}(\varepsilon)=\operatorname{ad}\left(\nu_{23}^{2}\right)$ and $2 \varepsilon=0$. Since $\left[\nu_{23}\right] \nu_{25}-\varepsilon \subset \operatorname{Im} i_{*}$, we have $2\left[\nu_{23}\right] \nu_{25}=0$. Therefore we can choose $\left[\nu_{23}\right] \nu_{25}$ as a generator. Then we obtain the required result.

For $i=30,31$, we obtain the resuits of $\pi_{i}(\Omega \Pi$: 2) by an argument similar to the case $i=28$.
4. Homotopy groups of $\boldsymbol{E}_{\mathbf{6}} / \boldsymbol{F}_{\mathbf{4}}$. Since $H^{*}\left(E_{6} / F_{4} ; \mathbf{Z}_{2}\right) \cong \wedge\left(x_{9}, S q^{8} x_{9}\right)$, we have

$$
E_{6} / F_{4} \underset{2}{\simeq} S^{9} \underset{\sigma_{9}}{\cup} e^{17} \cup e^{26}
$$

Let X denote the homotopy fibre of the inclusion of S^{9} in E_{6} / F_{4}. Then we have

$$
H^{*}\left(X ; \mathbf{Z}_{2}\right) \cong \wedge\left(x_{16}, x_{32}, \ldots, x_{16 \cdot 2^{i}}, \ldots\right)
$$

and

$$
X \underset{2}{\simeq} S^{16} \cup e^{32} \cup e^{48} \cup \cdots
$$

Therefore for $i \leq 30$, we have the homotopy exact sequence

$$
\begin{aligned}
& \cdots \longrightarrow \pi_{i}\left(S^{16}: 2\right) \xrightarrow{\sigma_{9 *}} \pi_{i}\left(S^{9}: 2\right) \longrightarrow \\
& \pi_{i}\left(E_{6} / F_{4}: 2\right) \longrightarrow \pi_{i-1}\left(S^{16}: 2\right) \xrightarrow{\sigma_{9 *}} \cdots
\end{aligned}
$$

We consider the short exact sequence

$$
0 \rightarrow \text { Coker } \sigma_{9 *} \rightarrow \pi_{i}\left(E_{6} / F_{4}: 2\right) \rightarrow \operatorname{Ker} \sigma_{9 *} \rightarrow 0
$$

For the case $i=16$, we have Ker $\sigma_{9 *} \cong \mathbf{Z}$. For the other values of $i(i \leq 30)$, the homomorphisms $\sigma_{9 *}: \pi_{i}\left(S^{16}: 2\right) \rightarrow \pi_{i}\left(S^{9}: 2\right)$ are monomorphism. Therefore we can calculate $\pi_{i}\left(E_{6} / F_{4}: 2\right)$ easily.

Theorem 4.1. We have the following table of the homotopy groups $\pi_{i}\left(E_{6} / F_{4}: 2\right)$ for $i \leq 30$.

i		$i \leq 7$	8	9	10	11	12
$\pi_{i}\left(E_{6} / F_{4}: 2\right)$	0	0	∞	2	2	8	
13	14	15	16	17	18	19	
0	0	2	0	$\infty+(2)^{2}$	$(2)^{3}$	2	
20	21	22	23	24	25	26	27
$8+2$	0	0	4	$16+2$	2	$(2)^{3}$	2
28	29	30					
$8+2$	8	2					

Remark. To calculate $\pi_{i}\left(E_{6} / F_{4}: 2\right)$ further, we need to determine the homotopy type of X.

References

[1] Borel, A.: Sur I'homologie et la cohomologie des groupes de Lie compacts connexes. Amer. J. Math., 76, 273-342 (1954).
[2] Conlon, L.: An application of the Bott suspension map to the topology of EIV. Pacific J. Math., 19, 411-428 (1966).
[3] Davis, D.M., and Mahowald, M.: Three contributions to the homotopy theory of the exceptional Lie groups G_{2} and F_{4}. J. Math. Soc. Japan, 43, 661-671 (1991).
[4] Hirato, Y.: Homotopy groups of F_{4} / G_{2}. Master's thesis of Shinshu Univ. (1996) (in Japanese).
[5] Hirato, Y., and Mukai, J.: Some Toda bracket in $\pi_{26}^{S}\left(S^{0}\right)$. J. Math. Okayama Univ. (to appear).
[6] Mimura, M.: On the generalized Hopf homomorphism and the higher composition, Part I. J. Math. Kyoto Univ., 4, 171-190 (1964).
[7] Mimura, M.: On the generalized Hopf homomorphism and the higher composition, Part II. J. Math. Kyoto Univ. 4, 301-326 (1965).
[8] Mimura, M.: The Homotopy groups of Lie groups of low rank, J. Math. Kyoto Univ., 6, 131-176 (1967).
[9] Mimura, M., Mori, M., and Oda, N.: Determination of 2 -components of the 23 and 24 -stems in homotopy groups of spheres. Mem. Fac. Sci. Kyushu Univ. Ser. A, 29, 1-42 (1975).
[10] Mimura, M., and Toda, H.: Homotopy groups of $S U(3), S U$ (4) and $S p$ (2). J. Math. Kyoto Univ., 3, 217-250 (1964).
[11] Mimura, M., and Toda, H.: The ($n+20$)-th homotopy groups of n-spheres. J. Math. Kyoto Univ., 3, 37-58 (1963).
[12] Mukai, J.: On the stable homotopy of a \mathbf{Z}_{2}-Moore space, Osaka J. Math., 6, 63-91 (1969).
[13] Oda, N.: On the 2-components of the unstable homotopy groups of spheres. II. Proc. Japan Acad., 53A, 215-218 (1977).
[14] Oda, N.: Unstable homotopy groups of spheres. Bull. Inst. Adv. Res. Fukuoka Univ., 44, 49-152 (1979).
[15] Oda, N.: Some Toda brackets and the relations of H.Ōshima in the homotopy groups of spheres. Fukuoka Univ. Sei. Rep., 15, 5-11 (1985).
[16] Toda, H.: Composition Methods in Homotopy Groups of Spheres. Ann. of Math. Studies, no. 49, Princeton (1962).

[^0]: 1991 Mathematics Subject Classification. Primary 55Q52; Secondary 57T20.
 *) The Graduate School of Natural Seience and Technology, Okayama University, 3-1-1, Tsushima-Nako. Okayama 700-8530.
 **) Department of Mathematical Sciences, Faculty of Seience, Shinshu University, 3-1-1. Asahi, Matsumoto, Nagano 390-8621.
 ***) Department of Mathematics, Faculty of Science, Okayama University, 3-1-1. Tsushima-Naka, Okayama 7008530.

