By Yoshihiro HIRATO,^{*)} Hideyuki KACHI,^{**)} and Mamoru MIURA^{***)}

(Communicated by Heisuke HIRONAKA, M. J. A., Jan. 12, 2001)

Abstract: In the paper we calculate 2-primary components of homotopy groups of the hmogeneous spaces F_4/G_2 , $F_4/\text{Spin}(9)$ and E_6/F_4 .

Key words: Homotopy group; homogeneous space; exceptional Lie group.

1. Introduction. Let G_2 , F_4 and E_6 be the compact, connected, simply connected, simple, exceptional Lie groups of rank 2, 4 and 6 respectively. We consider the homogeneous spaces F_4/G_2 , $F_4/\operatorname{Spin}(9) = \Pi$ and E_6/F_4 , where Π denotes the Cayley projective plane. We denote by $\pi_i(X : p)$ the *p*-primary component of $\pi_i(X)$. In this paper we calculate homotopy groups $\pi_i(F_4/G_2 : 2)$, $\pi_i(\Pi : 2)$ ans $\pi_i(E_6/F_4 : 2)$ for $i \leq 45$, $i \leq 38$ and $i \leq 30$ respectively. The calculations of $\pi_i(F_4/G_2 : 2)$ and $\pi_i(\Pi : 2)$ will be done by making use of the homotopy exact sequences associated with the 2-local fibration

$$S^{15} \longrightarrow F_4/G_2 \longrightarrow S^{23}$$

and the fibration

$$S^7 \longrightarrow \Omega \Pi \longrightarrow \Omega S^{23}$$

given by Davis and Mahowald [3]. The calculation of $\pi_i(E_6/F_4:2)$ will be done by making use of the 2-local fibration

$$X \longrightarrow S^9 \longrightarrow E_6/F_4,$$

where X is the homotopy fibre of the natural inclusion of S^9 in E_6/F_4 . To determine the group extension we use the following theorem which is proved by Mimura and Toda [10].

Theorem 1.1 (Theorem 2.1 of [10]). Let

(X, p, B) be a fibration with the fibre $F(=p^{-1}(*))$ and Δ the boundary homomorphism of the homo-

***) Department of Mathematics, Faculty of Science, Okayama University, 3-1-1. Tsushima-Naka, Okayama 700-8530. topy exact sequence associated with the fibration. Assume that $\alpha \in \pi_{i+1}(B)$, $\beta \in \pi_j(S^i)$ and $\gamma \in \pi_k(S^j)$ satisfy the conditions $(\Delta(\alpha))\beta = 0$ and $\beta\gamma = 0$. For an arbitrary element δ of Toda bracket $\{\Delta(\alpha), \beta, \gamma\} \subset \pi_{k+1}(F)$, there exists an element $\varepsilon \in \pi_{j+1}(X)$ such that

$$p_*\varepsilon = \alpha E\beta, \quad i_*\delta = \varepsilon E\gamma,$$

where $i: F \to X$ is an inclusion map.

The notations and the terminologies in [6], [7], [9], [10], [11], [12], [14], [16] will be freely used in the present paper, and we also omit for simplicity the notation \circ indicating composition.

The results in the present pater shall be used to deduce $\pi_i(F_4)$ add $\pi_i(E_6)$ in the forthcoming paper.

2. Homotopy groups of F_4/G_2 . We consider the 2-local fibration

$$S^{15} \xrightarrow{i} F_4/G_2 \xrightarrow{p} S^{23}$$

which is given by Davis and Mahowald [3]. Then we have the homotopy exact sequence

$$\cdots \longrightarrow \pi_{i+1}(S^{23}:2) \xrightarrow{\Delta_i + 1} \pi_i(S^{15}:2)$$
$$\xrightarrow{i_*} \pi_i(F_4/G_2:2) \xrightarrow{p_*} \pi_i(S^{23}:2) \xrightarrow{\Delta_i} \cdots$$

associated with the above 2-local fibration. This exact sequence induces an exact one:

(1)
$$0 \to \operatorname{Coker}\Delta_{i+1} \xrightarrow{i_*} \pi_i(F_4/G_2:2) \xrightarrow{p_*} \operatorname{Ker}\Delta_i \to 0.$$

Since $H^*(F_4/G_2; \mathbb{Z}_2) \cong \wedge(x_{15}, Sq^8x_{15})$ ([1]), we have the 2-local equivalence

$$F_4/G_2 \simeq S_{\sigma_{15}}^{15} \cup_{\sigma_{15}} e^{23} \cup e^{38}.$$

Here we have the formulas

(2)
$$\Delta_{23}(\iota_{23}) = \sigma_{15}$$
 and $\Delta_i(E\alpha) = \sigma_{15}\alpha$

where ι_{23} is the homotopy class of the identity map of S^{23} and $\alpha \in \pi_{i-1}(S^{22}:2)$. By making use of the formula (2), we calculate the kernel and the cokernel

¹⁹⁹¹ Mathematics Subject Classification. Primary 55Q52; Secondary 57T20.

^{*)} The Graduate School of Natural Seience and Technology, Okayama University, 3-1-1, Tsushima-Nako. Okayama 700-8530.

^{**)} Department of Mathematical Sciences, Faculty of Seience, Shinshu University, 3-1-1. Asahi, Matsumoto, Nagano 390-8621.

of the boundary homomorphism $\Delta_i : \pi_i(S^{23}:2) \to \pi_{i-1}(S^{15}:2)$. The results are stated in the following.

Lemma 2.1. We have the following table of the kernel and the cokernel of Δ_i .

i		23	24	25	26	27	28	29
Ker	Δ_i	∞	0	0	8	0	0	2
Coker	Δ_{i+1}	2	$(2)^2$	2	8	0	0	2
30	31		32	33		34		35
4	$(2)^{2}$	2 (2	$(2)^2$	0		8		0
32 + 2	$(2)^{2}$	2 (2	$2)^4$	$(8)^2 +$	2 8	3 + (2)	$)^{2}$	8
36	37			38		39	40	_
0	2		16	3 + 2		2	$(2)^2$	2
$(2)^2$	8 + (2)	$(2)^{3}$	16 +	8 + (2)) ³ ($2)^4$	$(2)^{3}$	3
41		42	43	44	4	5	-	
2	8	+2	8	$(2)^2$	(2	$(2)^2$	_	
8 + (2)	$)^{2}$	8	2	2	8+	$(2)^2$	_	

Here an integer n indicates a cyclic group \mathbf{Z}_n of order n, the symbol ∞ an infinite eyelie group \mathbf{Z} , the symbol + the direct sum of groups and $(n)^k$ indicates the direct sum of k-copies of \mathbf{Z}_n .

Let us state our first main result.

Theorem 2.2. We have the following table of the homotopy groups $\pi_i(F_4/G_2:2)$ for $i \leq 45$.

i	$i \leq 14$	15 1	6 17	18
$\pi_i(F_4/G_2:2)$	0	∞ :	2 2	8
19,20 21 2	2 23	24	25	26
0 2 0	$) \infty +$	$2 (2)^2$	2	64
27,28 29	30	31	32	33
0 $(2)^2$	128 + 2	$(2)^4$	$(2)^{6}$	$(8)^2 + 2$
34 35	36	37		
$64 + (2)^2 = 8$	$(2)^2$	8+4+	$(2)^2$	
38	39	40	41	42
$256 + 8 + (2)^4$	$(2)^5$	$(2)^5 = 8$	3 + 4 +	2 64+2
		_		
43 44	45	_		
8+2 (2) ³	$8 + (2)^4$	_		

Proof. From Lemma 2.1, it follows that the homomorphisms i_* : Coker $\Delta_{i+1} \to \pi_i(F_4/G_2:2)$ are

isomorphisms for $i \le 22$ and i = 24, 25, 27, 28, 33, 35, 36.

We remark that $\pi_{27}(F_4/G_2:2) = \pi_{28}(F_4/G_2:2) = 0.$

Consider the case i = 26. By Lemma 2.1 and the exact sequence (1), we have an exact sequence

$$0 \longrightarrow \mathbf{Z}_8 \xrightarrow{i_*} \pi_{26}(F_4/G_2:2) \xrightarrow{p_*} \mathbf{Z}_8 \longrightarrow 0,$$

where the first \mathbf{Z}_8 is generated by ζ_{15} and the second \mathbf{Z}_8 is generated by ν_{23} . For the Toda bracket, we have

$$\{\sigma_{15}, \nu_{23}, 8\iota_{25}\} \ni x\zeta_{15}$$

for some old integer x. By Theorem 1.1, these exists an element $[\nu_{23}] \in \pi_{26}(F_4/G_2:2)$ such that

 $p_*([\nu_{23}]) = \nu_{23}$ and $i_*(x\zeta_{15}) = 8[\nu_{23}].$

Therefore we obtain $\pi_{26}(F_4/G_2:2) = \{[\nu_{23}]\} \cong \mathbb{Z}_{64}$. For i = 30, 34, 37, 38, 41, 42, we obtain the results of $\pi_i(F_4/G_2:2)$ by an argument similar to the case i = 26.

Consider the case i = 29. By Lemma 2.1 and the exact sequence (1), we have an exact sequence

$$0 \longrightarrow \mathbf{Z}_2 \xrightarrow{\iota_*} \pi_{29}(F_4/G_2:2) \xrightarrow{p_*} \mathbf{Z}_2 \longrightarrow 0,$$

where the first \mathbf{Z}_2 is generated by κ_{15} and the second \mathbf{Z}_2 is generated by ν_{23}^2 . We consider $[\nu_{23}]\nu_{26}$. We have

$$\begin{aligned} 2([\nu_{23}]\nu_{26}) &= [\nu_{23}]E^{23}\nu' & \text{by (5.5) of [16]} \\ &\in [\nu_{23}]\{\eta_{26}, 2\iota_{27}, \eta_{27}\} & \text{by the definition} \\ & \text{of }\nu'([16]) \\ &\subset \{[\nu_{23}]\eta_{26}, 2\iota_{27}, \eta_{27}\}. \end{aligned}$$

Since $\pi_{27}(F_4/G_2 : 2) = \pi_{28}(F_4/G_2 : 2) = 0$, we have $\{[\nu_{23}]\eta_{26}, 2\iota_{27}, \eta_{27}\} = \{0, 2\iota_{27}, \eta_{27}\} \equiv 0 \mod 0$. Therefore we have

$$2([\nu_{23}]\nu_{26}) = 0.$$

Moreover we have

$$p_*([\nu_{23}]\nu_{26}) = (p_*\nu_{23}])\nu_{26} = \nu_{23}^2.$$

This implies that the above sequence splits.

For i = 31, 32, 39, 40, 43, 44, 45, we obtain the results of $\pi_i(F_4/G_2 : 2)$ by an argument similar to the case i = 29.

3. Homotopy groups of $\Pi = F_4/\text{Spin}(9)$. We consider the fibration

$$S^7 \stackrel{i}{\longrightarrow} \Omega\Pi \stackrel{p}{\longrightarrow} \Omega S^{23}$$

which is given by Davis and Mahowald [3]. Then we have the homotopy exact sequence

$$\cdots \longrightarrow \pi_{i+1}(\Omega S^{23}:2) \xrightarrow{\Delta_{i+1}} \pi_i(S^7:2)$$
$$\xrightarrow{i_*} \pi_i(\Omega \Pi:2) \xrightarrow{p_*} \pi_i(\Omega S^{23}:2) \xrightarrow{\Delta_i} \cdots$$

associated with the above fibration. This exact sequence induces an exact one:

(3) $0 \to \operatorname{Coker}\Delta_{i+1} \xrightarrow{i_*} \pi_i(\Omega\Pi:2) \xrightarrow{p_*} \operatorname{Ker}\Delta_i \to 0.$

By Davis-Mahowald [3] and Mimura [8], we have the 2-local equivalence

$$\Omega \Pi \simeq S^7 \underset{\sigma' \sigma_{14}}{\cup} e^{22} \cup e^{29} \cup \cdots .$$

Here we have the formulas

(4) $\Delta_{22} \operatorname{ad}(\iota_{23}) = \sigma' \sigma_{14}$ and $\Delta_i \operatorname{ad}(E^2 \alpha) = \sigma' \sigma_{14} \alpha$, where $\operatorname{ad}: \pi_{23}(S^{23}:2) \to \pi_{22}(\Omega S^{23}:2)$ is the adjoint isomorphism and $\alpha \in \pi_{i-2}(S^{21}:2)$. By making use of the formula (4), we calculate the kernel and the cokernel of the boundary homomorphism $\Delta_i: \pi_i(\Omega S^{23}:2) \to \pi_{i-1}(S^7:2)$. The results are stated in the following.

Lemma 3.1. We have the following table of the kernel and the cokernel of Δ_i .

i		2	2	23	24	25	
Ker	Δ_i	0	0	0	0	8	
Coker	Δ_{i+1}	8+	$(2)^2$	$(2)^{3}$	$(2)^4$	8 + 2	2
26	27	28	2	29	ę	80	31
0	0	2	1	.6	(2	$(2)^2$	$(2)^2$
8 + 2	8	$(2)^2$	8 +	$(2)^{3}$	$(8)^2$	$+(2)^{3}$	$(2)^{6}$
32	2	e e	33	3	4	35	
0)		8	()	0	
8+4-	$+(2)^{3}$	8+	$(2)^{6}$	$(8)^2$	+2	$(2)^4$	
36		37					
$(2)^2$		32 +	2				
8 + (2)	$)^4$ (8	$(3)^2 + (3)^2$	$(2)^2$				

Theorem 3.2. We have the following table of the homotopy groups $\pi_i(\Pi : 2)$ for $i \leq 38$.

	i	$i \leq 7$	8	9	10	11	12, 13	3
$\pi_i(\mathbf{I})$	I:2)	0	∞	2	2	8	0	
14	15	16	17	18	3	19	20	21
2	8	$(2)^3$	$(2)^4$	8+	2	8 + 2	0	2

22	23	24	25	26	
4	$\infty + 8 + (2)^2$	$(2)^{3}$	$(2)^4$	64 + 2	
					_
27	28 29	30		31	
8 + 1	$2 8 (2)^3$	128 + ($(2)^3$	$(8)^2 + (2)^5$	•
32	33	34	Į	35	36
$(2)^{8}$	$8+4+(2)^3$	64 +	$(2)^{6}$	$(8)^2 + 2$	$(2)^4$
	37	38			
16 +	$-4+(2)^3$ 256	3 + 8 + ($(2)^{3}$		

Proof. From Lemma 3.1, it follows that the homomorphism i_* : Coker $\Delta_{i+1} \rightarrow \pi_i(\Omega\Pi : 2)$ are isomorphisms for $i \leq 21$ and i = 23, 24, 26, 27, 32, 34, 35.

Consider the case i = 25. By Lemma 3.1 and the exact sequence (3), we have an exact sequence

$$0 \longrightarrow \mathbf{Z}_8 \oplus \mathbf{Z}_2 \xrightarrow{i_*} \pi_{25}(\Omega \Pi : 2) \xrightarrow{p_*} \mathbf{Z}_8 \longrightarrow 0.$$

where $\mathbf{Z}_8 \oplus \mathbf{Z}_2$ is generated by $\zeta_7 \sigma_{18}$, $\eta_7 \bar{\mu}_8$ and \mathbf{Z}_8 is generated by $\mathrm{ad}(\nu_{23})$. For the Toda bracket, we have

$$\{\sigma'\sigma_{14}, \nu_{21}, 8\iota_{24}\} \ni x\zeta_7\sigma_{18}$$

for some odd integer x. By Theorem 1.1, there exists an element $[\nu_{23}] \in \pi_{25}(\Omega\Pi : 2)$ such that

$$p_*([\nu_{23}]) = \operatorname{ad}(\nu_{23})$$
 and $i_*(x''\zeta_7\sigma_{18}) = 8[\nu_{23}].$

Therefore we have $\pi_{25}(\Omega\Pi:2) \cong \mathbf{Z}_{64} \oplus \mathbf{Z}_2$.

For i = 29, 33, 36, 37, we obtain the results of $\pi_i(\Omega\Pi : 2)$ by an argument similar to the case i = 25.

Consider the case i = 28. By Lemma 3.1 and the exact sequence (3), we have an exact sequence

$$0 \longrightarrow \mathbf{Z}_2 \oplus \mathbf{Z}_2 \stackrel{i_*}{\longrightarrow} \pi_{28}(\Omega \Pi : 2) \stackrel{p_*}{\longrightarrow} \mathbf{Z}_2 \longrightarrow 0,$$

where $\mathbf{Z}_2 \oplus \mathbf{Z}_2$ is generated by $\eta_7 \bar{\kappa}_8$, $\sigma' \kappa_{14}$ and \mathbf{Z}_2 is generated by $\mathrm{ad}(\nu_{23}^2)$. For the Toda bracket, we have

$$\{\sigma'\sigma_{14}, \nu_{21}^2, 2\iota_{27}\} = 0.$$

By Theorem 1.1, there exists an element $\varepsilon \in \pi_{28}(\Omega\Pi : 2)$ such that $p_*(\varepsilon) = \operatorname{ad}(\nu_{23}^2)$ and $2\varepsilon = 0$. Since $[\nu_{23}]\nu_{25} - \varepsilon \subset \operatorname{Im} i_*$, we have $2[\nu_{23}]\nu_{25} = 0$. Therefore we can choose $[\nu_{23}]\nu_{25}$ as a generator. Then we obtain the required result.

For i = 30, 31, we obtain the results of $\pi_i(\Omega \Pi : 2)$ by an argument similar to the case i = 28.

4. Homotopy groups of E_6/F_4 . Since $H^*(E_6/F_4; \mathbb{Z}_2) \cong \wedge(x_9, Sq^8x_9)$, we have

$$E_6/F_4 \simeq S^9 \bigcup_{\sigma_9} e^{17} \cup e^{26}.$$

18

Let X denote the homotopy fibre of the inclusion of $\begin{bmatrix} 2 \end{bmatrix}$

 S^9 in E_6/F_4 . Then we have

$$H^*(X; \mathbf{Z}_2) \cong \wedge (x_{16}, x_{32}, \dots, x_{16 \cdot 2^i}, \dots)$$

and

$$X \simeq S^{16} \cup e^{32} \cup e^{48} \cup \cdots$$

Therefore for $i \leq 30$, we have the homotopy exact sequence

$$\cdots \longrightarrow \pi_i(S^{16}:2) \xrightarrow{\sigma_{9*}} \pi_i(S^9:2) \longrightarrow$$
$$\pi_i(E_6/F_4:2) \longrightarrow \pi_{i-1}(S^{16}:2) \xrightarrow{\sigma_{9*}} \cdots$$

We consider the short exact sequence

$$0 \to \operatorname{Coker} \sigma_{9*} \to \pi_i(E_6/F_4:2) \to \operatorname{Ker} \sigma_{9*} \to 0.$$

For the case i = 16, we have Ker $\sigma_{9*} \cong \mathbb{Z}$. For the other values of i ($i \leq 30$), the homomorphisms $\sigma_{9*} : \pi_i(S^{16} : 2) \to \pi_i(S^9 : 2)$ are monomorphism. Therefore we can calculate $\pi_i(E_6/F_4 : 2)$ easily.

Theorem 4.1. We have the following table of the homotopy groups $\pi_i(E_6/F_4:2)$ for $i \leq 30$.

	i		$i \leq 7$	8	9	10	11	12
$\pi_i(E_6$	$/F_4:$	2)	0	0	∞	2	2	8
13 1	14 1	5 1	6	17		18	19	-
0	0	2 () с	$\infty + (2)$	$(2)^2$	$(2)^{3}$	2	_
20	21	22	23	24	4	25	26	27
8 + 2	0	0	4	16 -	+2	2	$(2)^{3}$	2
28	29	30	-					
20	20	00						

Remark. To calculate $\pi_i(E_6/F_4:2)$ further, we need to determine the homotopy type of X.

References

 Borel, A.: Sur l'homologie et la cohomologie des groupes de Lie compacts connexes. Amer. J. Math., 76, 273–342 (1954).

- [2] Conlon, L.: An application of the Bott suspension map to the topology of *EIV*. Pacific J. Math., 19, 411–428 (1966).
- $\begin{bmatrix} 3 \end{bmatrix}$ Davis, D.M., and Mahowald, M.: Three contributions to the homotopy theory of the exceptional Lie groups G_2 and F_4 . J. Math. Soc. Japan, **43**, 661–671 (1991).
- [4] Hirato, Y.: Homotopy groups of F_4/G_2 . Master's thesis of Shinshu Univ. (1996) (in Japanese).
- $[\ 5\]$ Hirato, Y., and Mukai, J.: Some Toda bracket in $\pi^S_{26}(S^0).$ J. Math. Okayama Univ. (to appear).
- [6] Mimura, M.: On the generalized Hopf homomorphism and the higher composition, Part I. J. Math. Kyoto Univ., 4, 171–190 (1964).
- [7] Mimura, M.: On the generalized Hopf homomorphism and the higher composition, Part II. J. Math. Kyoto Univ. 4, 301–326 (1965).
- [8] Mimura, M.: The Homotopy groups of Lie groups of low rank, J. Math. Kyoto Univ., 6, 131–176 (1967).
- [9] Mimura, M., Mori, M., and Oda, N.: Determination of 2-components of the 23 and 24-stems in homotopy groups of spheres. Mem. Fac. Sci. Kyushu Univ. Ser. A, 29, 1–42 (1975).
- [10] Mimura, M., and Toda, H.: Homotopy groups of SU (3), SU (4) and Sp (2). J. Math. Kyoto Univ., 3, 217–250 (1964).
- [11] Mimura, M., and Toda, H.: The (n+20)-th homotopy groups of *n*-spheres. J. Math. Kyoto Univ., **3**, 37–58 (1963).
- [12] Mukai, J.: On the stable homotopy of a Z₂-Moore space, Osaka J. Math., 6, 63–91 (1969).
- [13] Oda, N.: On the 2-components of the unstable homotopy groups of spheres. II. Proc. Japan Acad., 53A, 215–218 (1977).
- [14] Oda, N.: Unstable homotopy groups of spheres. Bull. Inst. Adv. Res. Fukuoka Univ., 44, 49–152 (1979).
- [15] Oda, N.: Some Toda brackets and the relations of H.Ōshima in the homotopy groups of spheres. Fukuoka Univ. Sei. Rep., 15, 5–11 (1985).
- [16] Toda, H.: Composition Methods in Homotopy Groups of Spheres. Ann. of Math. Studies, no. 49, Princeton (1962).

No. 1]