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A note on the Selmer group of the elliptic curve y2 = x3 + Dx
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Graduate School of Mathematics, Kyushu University 33, 6-10-1, Hakozaki, Higashi-ku, Fukuoka 812-8581

(Communicated by Heisuke Hironaka, m. j. a., Sept. 12, 2001)

Abstract: We present an explicit formula for the Selmer rank of the elliptic curve y2 =
x3 + Dx. Using this formula, we give some results analogous to Iskra’s theorem.
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1. Introduction. In this note, we study the
Q-rank of the elliptic curve defined by

ED : y2 = x3 + Dx (D ∈ Q).

We can suppose without loss of generality that D is
a fourth-power free integer and not divided by 4 (if
necessary, we must consider the dual curve E−4D,
whose Q-rank is equal to that of ED). Bremner and
Cassels [4] studied the rank of ED when D is a prime,
and Yoshida [9] did when D is a product of two dis-
tinct primes. In both cases, one can obtain the upper
bound for the rank by the 2-descent method via 2-
isogeny. In this note, we call this upper bound the
Selmer rank. It is believed that the parity of the
Selmer rank is equal to that of the actual rank of the
curve. Birch and Stephens [3] give the formula for
the parity of the Selmer rank of ED. The purpose of
this note is to give a formula for the Selmer rank of
ED for general D.

Since E−n2 is the elliptic curve connected with
the congruent number problem, many mathemati-
cians have studied this curve. For example, Iskra [5]
proved the following theorem.

Theorem 1 (Iskra). Let primes p1, . . . , pr

satisfy the following two conditions:
• pi ≡ 3 (mod 8) for ∀i.
• (pi/pj) = 1 for i < j, where ( / ) is the Legendre

symbol.
And let D = −p2

1 · · · p2
r. Then the rank of the curve

ED is 0.
The complete 2-descent method gives the bet-

ter upper bound than the Selmer rank. Aoki [1] and
Monsky (appendix in Heath-Brown [7]) give each for-
mula for this upper bound of the curve E−n2 . Iskra’s
theorem can be proven by Monsky’s formula.
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The main result of this note is an explicit for-
mula for the Selmer rank of the curve ED (see (2)
and Theorems 4 and 5). Applying the main result,
we have the following facts analogous to Iskra’s the-
orem.

Theorem 2. When D has one of the following
forms, the rank of the curve ED is 0.
(a) D = 2p1 · · · pr, where

pi ≡ 5 (mod 8), (pj/pi) = 1 for i �= j.
(b) D = 2p1 · · · pr, where r is even and

pi ≡ 5 (mod 8), (pj/pi) = −1 for i �= j.
(c) D = p2

1 · · · p2
r, where

pi ≡ 5 (mod 8), (pj/pi) = 1 for i �= j.
(d) D = p2

1 · · · p2
r, where r is even and

pi ≡ 5 (mod 8), (pj/pi) = −1 for i �= j.
(e) D = 2p2

1 · · · p2
r, where pi ≡ 5 (mod 8).

(f) D = 2p3
1 · · · p3

r, where
pi ≡ 5 (mod 8), (pj/pi) = 1 for i �= j.

(g) D = 2p3
1 · · · p3

r, where r is even and
pi ≡ 5 (mod 8), (pj/pi) = −1 for i �= j.
We have three remarks. Firstly, (c) and (d) are

the cases of the congruent number problem with n =
2p1 · · · pr. Secondly, calculating the Selmer rank is
sufficient to deduce Theorem 2, but not sufficient to
give Theorem 1. Iskra’s theorem can be proven by
the complete 2-descent method. Thirdly, applying
the main result, we can also give the sequence of
ED whose Selmer rank can be arbitrary large. For
example, if r is odd, pi ≡ 5 (mod 8), (pj/pi) = −1
for i �= j, and D = 2p1 · · · pr, then the Selmer rank
of ED is 2r − 2.

2. Notations and some basic facts. In
this section, we recall some basic facts on the Selmer
group of elliptic curve with at least one rational 2-
torsion. For details, we refer [8, Chapter X]. Assume
that E/Q has a rational 2-torsion and E′ is the dual
curve of E. Let ϕ : E → E′ be the isogeny of degree
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2, and ϕ′ the dual isogeny of ϕ. In this note, we use
the following notation:
• S(ϕ)(E/Q), S(ϕ′)(E′/Q) are the Selmer groups

associated to ϕ, ϕ′.
• δk : E′(k)/ϕ(E(k)) → k×/k×2 is the connect-

ing homomorphism. When k = Qp, we simply
write δp for δk (we suppose Q∞ = R). Similarly,
we denote by δ′k the connecting homomorphism:
E(k)/ϕ′(E′(k)) → k×/k×2.

Then we have the formula

rankE(Q) ≤ dimF2 S(ϕ)(E/Q)

+ dimF2 S(ϕ′)(E′/Q) − 2.

In this note, we call the value of the right hand side
the Selmer rank.

We now explain the method of calculating the
Selmer group. From the definition of the Selmer
group, we have the equivalent definition{

S(ϕ)(E/Q) =
⋂

p∈MQ
Im(δp),

S(ϕ′)(E′/Q) =
⋂

p∈MQ
Im(δ′p),

(1)

where MQ = {primes}∪{∞} and the groups Im(δp),
Im(δ′p) are regarded as the subgroups of the group
Q×

p /Q×2
p .

In view of the following theorem, if one of the
groups Im(δ′p) and Im(δp) is given, the other group is
automatically determined (see for example Aoki [2]).

Theorem 3. Let p ∈ MQ and ( , )p be the
Hilbert symbol. For a subgroup V ⊂ Q×

p /Q×2
p , we

define V ⊥ = {x ∈ Q×
p /Q×2

p | (x, y)p = 1 for all y ∈
V }. Then it holds that Im(δp) = Im(δ′p)

⊥.
3. Main result and some examples. The

Selmer group is defined as the intersection of all im-
ages of connecting homomorphisms (see (1)). In the
case that p = ∞, it clearly holds that{

D > 0 ⇒ Im(δ′∞) = {1}, Im(δ∞) = {±1}.
D < 0 ⇒ Im(δ′∞) = {±1}, Im(δ∞) = {1}.

The following theorems give the images of the con-
necting homomorphisms δ′p and δp for the bad primes
of ED. In this note, we denote by 〈c1, . . . , cn〉 the
subgroup of Q×/Q×2 or Q×

p /Q×2
p for some p ∈ MQ

generated by c1, . . . , cn ∈ Q, and u represents a non-
square element modulo p.

Theorem 4. Let p be an odd prime dividing
D, and ordp(D) = a, D = paD′. Then the images
Im(δ′p) and Im(δp) are determined as follows:
(a) If a = 1 or 3, then Im(δ′p) = 〈D〉 and Im(δp) =

〈−D〉.

(b) Let a = 2 and p ≡ 1 (mod 4).
(i) If D is a p-adic square, then

• (−D′)(p−1)/4 ≡ 1 (mod p)
⇒ Im(δ′p) = 〈p〉, Im(δp) = 〈p〉.

• (−D′)(p−1)/4 ≡ −1 (mod p)
⇒ Im(δ′p) = 〈pu〉, Im(δp) = 〈pu〉.

(ii) If D is a p-adic non-square, then Im(δ′p) =
Z×

p Q×
p /Q×2

p and Im(δp) = Z×
p Q×

p /Q×2
p .

(c) Let a = 2 and p ≡ 3 (mod 4).
(i) If D is a p-adic square, then Im(δ′p) = {1}

and Im(δp) = Q×
p /Q×2

p .
(ii) If D is a p-adic non-square, then Im(δ′p) =

Q×
p /Q×2

p and Im(δp) = {1}.
Note that (−D′)(p−1)/4 ≡ 1 (mod p) if and only

if −D′ is a quartic residue modulo p.
Theorem 5. The images Im(δ′2) and Im(δ2)

are determined as follows:
(a) If D ≡ 1 (mod 8), then Im(δ′2) = {1} and

Im(δ2) = Q×
2 /Q×2

2 .
(b) If D ≡ 5 (mod 8), then Im(δ′2) = 〈5〉 and

Im(δ2) = 〈−1, 5〉.
(c) If D ≡ 3 (mod 16), then Im(δ′2) = 〈−5〉 and

Im(δ2) = 〈−2, 5〉.
(d) If D ≡ 7, 11 (mod 16), then Im(δ′2) = 〈−1, 5〉

and Im(δ2) = 〈5〉.
(e) If D ≡ 15 (mod 16), then Im(δ′2) = 〈−1〉 and

Im(δ2) = 〈2, 5〉.
(f) If D is even, then Im(δ2) = 〈−D〉 and Im(δ′2) is

determined by Theorem 3.
Example 1. Let D = 775 = 52 ·31. Note that

31 is a quartic residue modulo 5. By Theorems 4 and
5, the images of the connecting homomorphisms are
determined as follows:

p Im(δ′p) Im(δp)
∞ {1} {±1}
2 〈−1, 5〉 〈5〉
5 〈10〉 〈10〉
31 〈31〉 〈−31〉

We define some notations:

S = {p | Im(δ′p) − Z×
p Q×

p /Q×2
p �= φ} ∪ S∞,

T = {p | Im(δp) − Z×
p Q×

p /Q×2
p �= φ} ∪ T∞,

where S∞, T∞ are the sets defined by{
D > 0 ⇒ S∞ = φ, T∞ = {−1},
D < 0 ⇒ S∞ = {−1}, T∞ = φ.

For the set X, we denote by VX the subgroup of
Q×/Q×2 generated by all elements of X. In the
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case that D = 775,

S = {5, 31},
T = {−1, 5, 31},
VS = 〈5, 31〉,
VT = 〈−1, 5, 31〉.

It is clear that VS ⊂ S(ϕ′)(ED/Q) and VT ⊂
S(ϕ)(ED/Q). Using the representation of [6], we ob-
tain the matrices

Λ′ =
( 5 31

5 1 0
31 0 0

)
,

Λ =




2 5 31
−1 1 0 1

5 0 1 0
31 1 0 1


,

where the numbers outside the matrices represent
the meanings of these matrices. For example, that
(1, 1)-entry of Λ′ is 1 means 5 /∈ Im(δ′5), and that
(1, 2)-entry is 0 means 5 ∈ Im(δ′31). Then that
the entries in the second row are all 0 means 31 ∈
S(ϕ′)(ED/Q). From the matrix Λ, it is clear that
−1, 5, 31 /∈ S(ϕ)(ED/Q). And it follows that −31 ∈
S(ϕ)(ED/Q) since the first row and the third row are
the same. Note that VT /(Im(δp)∩ VT ) are groups of
order 2 for p = 2, 5, 31, where the group VT is re-
garded as the subgroup of Q×

p /Q×2
p . But this order

may be 4 for p = 2, and hence the definitions of
Λ′ and Λ are rather complicated (see [6] Table 4.)
Consequently, S(ϕ′)(ED/Q) = 〈31〉, S(ϕ)(ED/Q) =
〈−31〉, and the Selmer rank of E775 is 0. In general,
we have an useful formula

Selmer rank = |S| + |T |(2)

− rank Λ′ − rank Λ − 2.

Example 2. Let D = 1975 = 52 · 79. Note
that the types of 1975 and 775 are almost the same,
but 79 is a quartic non-residue modulo 5. In the case
that D = 1975, the Selmer rank is 2 by (2), and the
rank is also 2.

Theorem 2 can be also proven by (2). We give
only the short proof of (a).

Proof of Theorem 2 (a). In the case that r is
even,

l Im(δ′l) Im(δl)
∞ {1} {±1}
2 〈2,−5〉 〈−2〉
p1 〈2p1〉 〈2p1〉
...

...
...

pr 〈2pr〉 〈2pr〉

Λ′ =




2 p1 · · · pr

2 0 1 · · · 1
p1 1
...

... Ir

pr 1


,

Λ =




2 2′ p1 · · · pr

−1 0 1 0 · · · 0
2 0 1 1 · · · 1

p1 1 0
...

...
... Ir

pr 1 0


,

where Ir is the identity matrix of degree r. Since
Im(δ2) = 〈−2〉, the group VT /(Im(δ2)∩VT ) is Klein’s
four group. Therefore the definition of the matrix Λ
is rather complicated. For example, that (1, 1)-entry
of Λ is 0 means −1 ∈ {±1,±2}(⊂ Q×

2 /Q×2
2 ), and

that (1, 2)-entry is 1 means −1 /∈ {1, 5,−2,−10}.
Such a definition validates the formula (2). Hence
we have

Selmer rank = (r + 1) + (r + 2)

−r − (r + 1) − 2

= 0,

and rankED(Q) = 0. We can similarly prove the
case that r is odd. But since Im(δ2) = 〈−10〉 in the
case, we must reconsider the definition of the matrix
Λ.

4. Proof of Theorem 4. In this section,
we give the proof of Theorem 4. From the defi-
nition of the connecting homomorphism, it follows
that δk(P ) = x(P ) unless the order of P divides
2. Therefore in order to determine Im(δk), we must
check what numbers (modulo square) appear in the
x-coordinates of the k-rational points on the elliptic
curve E′. Similarly, we must check the x-coordinates
of the k-rational points of the elliptic curve E to de-
termine the image of the connecting homomorphism
δ′k. But, in view of Theorem 3, it is sufficient that
we calculate one of the images Im(δ′p) and Im(δp).

Proof of Theorem 4. Let p be an odd prime di-
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viding D, and ordp(D) = a, D = paD′. For (x, y) ∈
E(Qp), we let ordp(x) = e, x = pew(w ∈ Z×

p ), then

y2 = p3ew3 + pe+aD′w

= p3ew3(1 + p−2e+aw−2D′)(3)

= pe+aw(p2e−aw2 + D′)(4)

from the equation of ED. If e ≤ (a − 1)/2, then e

must be even and w ≡ 1(mod Q×2
p ) by (3), hence

x ≡ 1(mod Q×2
p ). Similarly, if e ≥ (a + 1)/2, then

x ≡ D (mod Q×2
p ) by (4).

In the case that a = 1 or 3, the points with (a−
1)/2 < e < (a + 1)/2 do not exist, hence we have
proved (a).

From now on, we assume that a = 2, then we
must investigate the set

H = {(x, y) ∈ ED(Qp) | ordp(x) = 1}.
We set a = 2, e = 1, then

y2 = p3w(w2 + D′)(5)

from (4). Therefore when (−D′/p) = −1, H = φ and
hence Im(δ′p) = 〈D〉. Now we have proved (b),(ii)
and (c),(i).

Next, we assume that (−D′/p) = 1. Let −D =
p2c2 (c ∈ Z×

p ), then

y = p3w(w + c)(w − c)

from (5). Hence w must be congruent to c or −c

modulo p. For example, if w − c = p2n−3z (n ≥
2, z ∈ Z×

p ), then

y2 = p2nz(p2n−3z + c)(p2n−3z + 2c).

From this representation, y ∈ Qp exists if and only if
z ≡ 2 (mod Q×2

p ). In this case, x = pw = p(p2n−3z+
c) ≡ pc (mod Q×2

p ). While w + c = p2n−3z, then
x ≡ −pc (mod Q×2

p ). Hence we have δ′p(H) = {±pc}
and Im(δ′p) = {1,D, pc,−pc}. Therefore Im(δ′p) =

Q×
p /Q×2

p in the case that p ≡ 3 (mod 4). We have
proved (c), (ii). When p ≡ 1 (mod 4), it follows that
Im(δ′p) = {1, pc} = 〈p〉 or 〈pu〉 according as c is
a quadratic residue modulo p or not, i.e. −D′ is a
quartic residue modulo p or not. We have proved
(b),(i) and the proof is complete.

Theorem 5 can be similarly proved. When D is
even, it is easier to study Im(δ2) than Im(δ′2) because
the structure of E−4D(Q2) is simpler than that of
ED(Q2).
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