with a non-trivial 2-torsion point

By Shoichi Kihara

Department of Neuropsychiatry, School of Medicine, Tokushima University, 3-18-15, Kuramoto-cho, Tokushima 770-8503 (Communicated by Shokichi Iyanaga, M. J. A., Jan. 12, 2001)

Abstract: We show an elliptic curve over $\mathbf{Q}(t)$ of rank at least 9 with a non-trivial 2-torsion point.

Key words: Elliptic curve; rank; 2 torsion point.

In [3], Nagao constructed a family of infinitely many elliptic curves over \mathbf{Q} with a non-trivial rational 2-torsion point and with rank ≥ 6 . Also, in [1], Fermigier gave an example of an elliptic curve over $\mathbf{Q}(t)$, of rank at least 8, with a non-trivial 2torsion point. We showed in [2] that there are infinitely many elliptic curves over \mathbf{Q} with a non-trivial rational 2-torsion point and with rank ≥ 9 .

In this note we show an example of elliptic curve with a non-trivial 2-torsion point over $\mathbf{Q}(t)$ of rank at least 9. Let

$$b_1 = u + a, \quad b_2 = u + b, \quad b_3 = u + c, \\ b_4 = -u + a, \ b_5 = -u + b, \ b_6 = -u + c,$$

and

$$F(x) = \prod_{i=1}^{6} (x^2 - b_i^2)$$

then there are unique polynomials G(x), $r(x) \in K(x)$ where $K = \mathbf{Q}(u, a, b, c)$, with $\deg G(x) = 6$, $\deg r(x) = 4$, and $F(x) = G(x)^2 - r(x)$.

r(x) is of the form,

$$r(x) = Ax^4 + Bx^2 + C \quad \text{where} \quad A, B, C \in K.$$

Now we consider the elliptic curve,

$$\mathcal{E} y^2 = r(x),$$

There are 6 K-rational points $P_i(x_i, y_i)$ $(1 \le i \le 6)$ on \mathcal{E} where $x_i = b_i$, $v_i = G(b_i)$.

By specializing $a = p^2(p+2q)$, $b = q^2(2p+q)$ and $c = (p+q)^2(p-q)$, we have another point $P_7(x_7, y_7)$ on \mathcal{E} , where

$$x_{7} = pq(p+q),$$

$$y_{7} = 2pq(-p+q)(p+q)(2p+q)(p+2q)u^{2}(-p^{6} - 3p^{5}q - 2p^{4}q^{2} + p^{3}q^{3} - 2p^{2}q^{4} - 3pq^{5} - q^{6} + u^{2}).$$

We treated the case $p = 2, q = 1$ in [2].

We treated the case p = 2, q = 1 in [2]. Next let

$$l = p^{2}(-p+q)(2p+q)(2p^{2}+pq+q^{2})$$

and

$$m = -3p^2q^2(p+q)^2,$$

by specializing

$$u = \frac{s^2 - l}{2s},$$

we have a point $P_8(x_8, y_8)$ on \mathcal{E} , where

$$x_8 = \frac{s^2 + l}{2s},$$

$$y_8 = 4p^2q(-p+q)(p+q)(2p+q)(p+2q)$$

$$\times u(p^2(-3p^2 + pq + q^2)(p^2 + pq + q^2)^2$$

$$+ 2q(p+q)u^2).$$

On the other hand, by specializing $u = (w^2 - m)/(2w)$ we have a point $P_9(x_9, y_9)$ on \mathcal{E} , where

$$x_{9} = \frac{w^{2} + m}{2w},$$

$$y_{9} = 4p^{2}q^{2}(-p+q)(p+q)^{2}(2p+q)(p+2q)$$

$$\times u(-(p^{2} + pq + q^{2})^{3} + 2u^{2}).$$

So we have to solve the Diophantine equation,

$$u = \frac{s^2 - l}{2s} - \frac{w^2 - m}{2w}$$

to make P_8 and P_9 both rational points.

¹⁹⁹¹ Mathematics Subject Classification. Primary 11G05.

Indeed we have the following solution,

$$\begin{split} p &= -(2+11t^2+6t^4) \\ q &= 2(1+t^2)(3+5t^2) \\ s &= 2t(-1+3t^2+t^4)(2+11t^2+6t^4) \\ &\times (8+27t^2+16t^4) \\ w &= 6t(1+t^2)(3+5t^2)^2(2+11t^2+6t^4) \\ u &= (1+t^2)(2+11t^2+6t^4) \\ &\times (16+67t^2+147t^4+115t^6+16t^8)/t. \end{split}$$

Now let us consider the following elliptic curve,

$$\mathcal{E}_0 \qquad \qquad y^2 = x(Ax^2 + Bx + C),$$

 \mathcal{E}_0 is an elliptic curve over $\mathbf{Q}(t)$, and there are 9 $\mathbf{Q}(t)$ -rational points $\mathbf{Q}_i(x_i^2, x_i y_i)$ $(1 \le i \le 9)$ and a 2-torsion point (0,0) on \mathcal{E}_0 .

Then we have the following,

Theorem. $\mathbf{Q}(t)$ -rank of \mathcal{E}_0 is al least 9.

Proof. We specialize t = 2.

Then we have 9 rational points R_1, \dots, R_9 obtained from Q_1, \dots, Q_9 . By using calculation system PARI, we see that the determinant of the matrix $(\langle \mathbf{R}_i, \mathbf{R}_j \rangle)$ $(1 \leq i, j \leq 9)$ associated to the canonical height is 13117244956208.81. Since this determinant is non-zero, we see Q_1, \dots, Q_9 are independent. \Box

References

- Fermigier, S.: Exemples de courbes elliptiques de grand rang sur Q(t) et sur Q possédant des points d'order 2. C. R. Acad. Sci. Paris Sér. I Math., 322, 949–952 (1996).
- [2] Kihara, S.: Construction of high-rank elliptic curves with a non-trivial rational point of order
 2. Proc. Japan Acad., **73A**, 165 (1997).
- [3] Nagao, K.: Construction of high-rank elliptic curves with a non trivial torsion point. Math. Comp., 66, 411–415 (1997).