On an elliptic curve over $\mathrm{Q}(t)$ of rank ≥ 9 with a non-trivial 2 -torsion point

By Shoichi Kihara
Department of Neuropsychiatry, School of Medicine, Tokushima University, 3-18-15, Kuramoto-cho, Tokushima 770-8503
(Communicated by Shokichi Iyanaga, M. J. A., Jan. 12, 2001)

Abstract

We show an elliptic curve over $\mathbf{Q}(t)$ of rank at least 9 with a non-trivial 2-torsion point.

Key words: Elliptic curve; rank; 2 torsion point.

In [3], Nagao constructed a family of infinitely many elliptic curves over \mathbf{Q} with a non-trivial rational 2 -torsion point and with rank ≥ 6. Also, in [1], Fermigier gave an example of an elliptic curve over $\mathbf{Q}(t)$, of rank at least 8 , with a non-trivial 2torsion point. We showed in [2] that there are infinitely many elliptic curves over \mathbf{Q} with a non-trivial rational 2 -torsion point and with rank ≥ 9.

In this note we show an example of elliptic curve with a non-trivial 2-torsion point over $\mathbf{Q}(t)$ of rank at least 9. Let

$$
\begin{aligned}
& b_{1}=u+a, \quad b_{2}=u+b, \quad b_{3}=u+c \\
& b_{4}=-u+a, \quad b_{5}=-u+b, \quad b_{6}=-u+c
\end{aligned}
$$

and

$$
F(x)=\prod_{i=1}^{6}\left(x^{2}-b_{i}^{2}\right)
$$

then there are unique polynomials $G(x), r(x) \in$ $K(x)$ where $K=\mathbf{Q}(u, a, b, c)$, with $\operatorname{deg} G(x)=6$, $\operatorname{deg} r(x)=4$, and $F(x)=G(x)^{2}-r(x)$.
$r(x)$ is of the form,

$$
r(x)=A x^{4}+B x^{2}+C \quad \text { where } \quad A, B, C \in K
$$

Now we consider the elliptic curve, \mathcal{E}

$$
y^{2}=r(x),
$$

There are $6 K$-rational points $\mathrm{P}_{i}\left(x_{i}, y_{i}\right)(1 \leq i \leq 6)$ on \mathcal{E} where $x_{i}=b_{i}, v_{i}=G\left(b_{i}\right)$.

By specializing $a=p^{2}(p+2 q), b=q^{2}(2 p+q)$ and $c=(p+q)^{2}(p-q)$, we have another point $\mathrm{P}_{7}\left(x_{7}, y_{7}\right)$ on \mathcal{E}, where

[^0]\[

$$
\begin{aligned}
x_{7} & =p q(p+q), \\
y_{7} & =2 p q(-p+q)(p+q)(2 p+q)(p+2 q) u^{2}\left(-p^{6}\right. \\
& \left.-3 p^{5} q-2 p^{4} q^{2}+p^{3} q^{3}-2 p^{2} q^{4}-3 p q^{5}-q^{6}+u^{2}\right) .
\end{aligned}
$$
\]

We treated the case $p=2, q=1$ in [2].
Next let

$$
l=p^{2}(-p+q)(2 p+q)\left(2 p^{2}+p q+q^{2}\right)
$$

and

$$
m=-3 p^{2} q^{2}(p+q)^{2}
$$

by specializing

$$
u=\frac{s^{2}-l}{2 s},
$$

we have a point $\mathrm{P}_{8}\left(x_{8}, y_{8}\right)$ on \mathcal{E}, where

$$
\begin{aligned}
x_{8}= & \frac{s^{2}+l}{2 s}, \\
y_{8}= & 4 p^{2} q(-p+q)(p+q)(2 p+q)(p+2 q) \\
& \times u\left(p^{2}\left(-3 p^{2}+p q+q^{2}\right)\left(p^{2}+p q+q^{2}\right)^{2}\right. \\
& \left.+2 q(p+q) u^{2}\right) .
\end{aligned}
$$

On the other hand, by specializing $u=\left(w^{2}-\right.$ $m) /(2 w)$ we have a point $\mathrm{P}_{9}\left(x_{9}, y_{9}\right)$ on \mathcal{E}, where

$$
\begin{aligned}
x_{9}= & \frac{w^{2}+m}{2 w}, \\
y_{9}= & 4 p^{2} q^{2}(-p+q)(p+q)^{2}(2 p+q)(p+2 q) \\
& \times u\left(-\left(p^{2}+p q+q^{2}\right)^{3}+2 u^{2}\right) .
\end{aligned}
$$

So we have to solve the Diophantine equation,

$$
u=\frac{s^{2}-l}{2 s}-\frac{w^{2}-m}{2 w}
$$

to make P_{8} and P_{9} both rational points.

Indeed we have the following solution,

$$
\begin{aligned}
p= & -\left(2+11 t^{2}+6 t^{4}\right) \\
q= & 2\left(1+t^{2}\right)\left(3+5 t^{2}\right) \\
s= & 2 t\left(-1+3 t^{2}+t^{4}\right)\left(2+11 t^{2}+6 t^{4}\right) \\
& \times\left(8+27 t^{2}+16 t^{4}\right) \\
w= & 6 t\left(1+t^{2}\right)\left(3+5 t^{2}\right)^{2}\left(2+11 t^{2}+6 t^{4}\right) \\
u= & \left(1+t^{2}\right)\left(2+11 t^{2}+6 t^{4}\right) \\
& \times\left(16+67 t^{2}+147 t^{4}+115 t^{6}+16 t^{8}\right) / t
\end{aligned}
$$

Now let us consider the following elliptic curve,

$$
\mathcal{E}_{0} \quad y^{2}=x\left(A x^{2}+B x+C\right),
$$

\mathcal{E}_{0} is an elliptic curve over $\mathbf{Q}(t)$, and there are 9 $\mathbf{Q}(t)$-rational points $\mathrm{Q}_{i}\left(x_{i}^{2}, x_{i} y_{i}\right)(1 \leq i \leq 9)$ and a 2 -torsion point $(0,0)$ on \mathcal{E}_{0}.

Then we have the following,
Theorem. $\mathbf{Q}(t)$-rank of \mathcal{E}_{0} is al least 9.

Proof. We specialize $t=2$.
Then we have 9 rational points $\mathrm{R}_{1}, \cdots, \mathrm{R}_{9}$ obtained from $\mathrm{Q}_{1}, \ldots, \mathrm{Q}_{9}$. By using calculation system PARI, we see that the determinant of the matrix $\left(\left\langle\mathrm{R}_{i}, \mathrm{R}_{j}\right\rangle\right)(1 \leq i, j \leq 9)$ associated to the canonical height is 13117244956208.81 . Since this determinant is non-zero, we see $\mathrm{Q}_{1}, \ldots, \mathrm{Q}_{9}$ are independent.

References

[1] Fermigier, S.: Exemples de courbes elliptiques de grand rang sur $\mathbf{Q}(t)$ et sur \mathbf{Q} possédant des points d'order 2. C. R. Acad. Sci. Paris Sér. I Math., 322, 949-952 (1996).
[2] Kihara, S.: Construction of high-rank elliptic curves with a non-trivial rational point of order 2. Proc. Japan Acad., 73A, 165 (1997).
[3] Nagao, K.: Construction of high-rank elliptic curves with a non trivial torsion point. Math. Comp., 66, 411-415 (1997).

[^0]: 1991 Mathematics Subject Classification. Primary 11G05.

