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Boundedness of canonical Q-Fano 3-folds

By János Kollár,∗) Yoichi Miyaoka,∗∗) Shigefumi Mori, m. j. a.,∗∗) and Hiromichi Takagi∗∗)

(Contributed by Shigefumi Mori, m. j. a., May 12, 2000)

Abstract: We give an effective bound of the Gorenstein index of weak Q-Fano 3-folds,
and prove the boundedness of the terminal Q-Fano 3-folds. Combined with [Bor99], this result
implies furthermore the boundedness of the canonical Q-Fano 3-folds.
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1. Introduction. In this paper, we will
work over an algebraically closed field k of charac-
teristic 0.

Definition 1.1. Let X be a normal projective
variety and ε a positive number. We recall that X
is said to have only terminal (resp. canonical, klt, ε-
lt) singularities if all the discrepancies a of X satisfy
a > 0 (resp. ≥ 0, > −1, > −1 + ε). X is called
a terminal (resp. canonical, klt, ε-lt, etc.) Q-Fano
variety if X has only terminal (resp. canonical, klt,
ε-lt, etc.) sigularities and −KX is ample. By re-
placing ‘ample’ with ‘nef and big’, terminal (resp.
canonical, klt, ε-lt, etc.) weak Q-Fano varieties are
similarly defined.

Let I(X) be the smallest positive integer I such
that IKX is Cartier; I(X) is called the Gorenstein
index of X.

We note that if X is a klt Q-Fano variety then
| −mKX | is free for some m > 0. The induced bi-
rational morphism X → X (resp. the target X) is
said to be the anti-canonical morphism (resp. anti-
canonical model) of X.

Our main result is the following, which was an-
nounced in [KMM92c]:

Theorem 1.2. Let X be a terminal weak Q-
Fano 3-fold. Then the following hold.
(1) −KX · c2(X) ≥ 0, and hence I(X)|24!.
(2) Assume further that the anti-canonical mor-

phism g : X → X does not contract any divi-
sors. Then (−KX)3 ≤ 63 · (24!)2.

(3) The terminal Q-Fano 3-folds are bounded, i.e.
there is a morphism of schemes of finite type
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f : X → S such that every geometric fiber of f
is a terminal Q-Fano 3-fold and every terminal
Q-Fano 3-fold appears as a geometric fiber of f .

The bounds above are far from being sharp and the
only meaning of such bounds is the effectiveness.
Theorem 1.2 is a generalization of [Kaw92, Thm. 2],
where 1.2 (1) and (2) were proved for Q-factorial X
with ρ(X) = 1.

The proof of 1.2 (2) is similar to the ones of
[KMM92a, Thm.] and [KMM92c, Thm. 0.2], where
the technique of gluing rational curves plays a crucial
role. For the proof of 1.2 (1), we need the theorem
of [Bat92, 3.2 Thm.] which is a structure theorem of
the cone of nef curves (see 2.2 below).

As for klt Q-Fano varieties, they do not form a
bounded family. However A. Borisov [Bor96, Bor99]
proved that the klt Q-Fano 3-folds with a fixed index
form a bounded family. Combining 1.2 (1) with this
result, we obtain the following.

Corollary 1.3. The canonical Q-Fano 3-folds
are bounded.

There is a more general conjecture by V. Alex-
eev and A. Borisov:

Conjecture 1.4. For arbitrary positive ε, ε-lt
Q-Fano varieties are bounded.

The conjecture in dimension 2 was proved by V.
Alexeev [Ale94], and a simpler proof was given by
V. Alexeev and S. Mori [AM95].

2. Preliminaries for 1.2 (1). We will recall
definitions and results without proofs to prove (1).

Definition 2.1. Let X be a normal projective
variety. Let NE1(X) be the closed convex cone gen-
erated by effective Q-Cartier divisors ⊂ N1(X) ⊗
R, where N1(X) is the group of numerical equiva-
lence classes of Q-Cartier divisors. The dual cone
NM1(X) ⊂ N1(X)⊗R of NE1(X) is called the cone
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of nef curves, where N1(X) is the group of numerical
equivalence classes of 1-cycles.

Theorem-Definition 2.2. Let (X,∆) be a
projective Q-factorial dlt pair of dimension at most
3 and H an ample Cartier divisor on X. Let ε be an
arbitrary positive number, and let

NEε1(X) := {z ∈ NE1(X)| − (KX + ∆) · z ≤ εH · z}.

Then there are a certain number, say r(ε), of ele-
ments

[li] ∈ NM1(X) ∩N1(X)Z \NEε1(X)

such that

NM1(X) + NEε1(X) =
r(ε)∑
i=1

R+[li] + NEε1(X).

When no li can be omitted in the equality, such
a R+[li] is called a coextremal ray. The following is
the recipe for the coextremal rays.

Assume that we obtain a log Mori fiber space

g′ : X ′ → Y ′,

by running (KX +∆)-MMP. Let φ : X 99K X ′ be the
natural birational map and

U ′ := {x′ ∈ X ′|φ−1 is an isomorphism at x′}.

Since codim(X ′ \ U ′) ≥ 2, we can take a projective
curve li′ ⊂ U ′ contained in a fiber of g. Let li be the
strict transform of li′. Then R+[li] is a coextremal
ray for some ε. Conversely every coextremal ray is
obtained by this procedure.

We say that g′ : X ′ → Y ′ is a log Mori fiber
space associated to R[li].

Proof. In [Bat92, 3.2 Thm.], a proof is given
for the assertion in case (X, 0) is terminal. The proof
works in our case.

Corollary 2.3. Under the notation and as-
sumptions of 2.2, assume further that −(KX + ∆)
is ample. Then NM1(X) =

∑r
i=1 R+[li].

Theorem 2.4 (Thm. 6.1 of [Miy87]). Let X
be a normal projective variety which is smooth in
codimension 2. Let E be a torsion free sheaf on X

such that
1. c1(X) is a nef Q-Cartier divisor, and
2. E is generically (H1,H2, . . . ,Hn−1)-semi-posi-

tive for ample divisors Hi, i.e.

c1(L) ·H1 ·H2 · · · · ·Hn−1 ≥ 0

for every quotient torsion-free sheaf E → L.
Then c2(E) ·H1 ·H2 · · · · ·Hn−2 ≥ 0.

Definition 2.5. Let X be a variety and π2 :
C → S a flat family of irreducible projective curves
in X over an irreducible base S. C is naturally con-
tained in X × S so that π2 is the restriction of the
second projection p2 : X × S → S.

C is said to be a covering family if p1(C) con-
tains an open dense subset of X, where p1 is the
first projection X × S → X.

We denote by {C} a covering family with a gen-
eral element C. A point x ∈ X is said to be a fixed
point of {C} if x belongs to all the members of {C}.

Definition-Proposition 2.6. Let X be a va-
riety and C a rational curve contained in RegX. We
say that C is a free rational curve if T 1

X |C is semi-
positive.

Let {C} be a covering family of rational curves
on X such that C ⊂ RegX. Then a general C is a
free rational curve.

We refer to [KMM92b, Cor.(1.3)] for the proof.
The following formula is from [Kaw86, Lem. 2.2, 2.3]
or [Rei87, (10.3)].

Theorem 2.7. Let X be a projective terminal
3-fold. Then

χ(OX) =
1
24

(−KX) · c2(X) +
1
24

∑(
ri −

1
ri

)
.

where ri are indices of cyclic quotient terminal sin-
gularities obtained by deforming singularities of X
locally.

3. Proofs of 1.2 (1) and (3).
Proof of “(1), (2)⇒ (3)”. Let X be a ter-

minal Q-Fano 3-fold. By (1), L := −(24!)KX is an
ample Cartier divisor which satisfies (L3) ≤ 63 ·(24!)2

by (2). So there are a finite number of the possibili-
ties of the two highest coefficients of the polynomial
P (t) := χ(OX(tL)). Hence by [KM83], there are
also a finite number of the possibilities of P (t) and
by [Kol85, Thm. 2.1.3], the boundedness follows.

We will prove (1) in the rest of this section.
Proof of 1.2 (1). Let X be a terminal weak

Q-Fano 3-fold. Then the Q-factorialization π : X̃ →
X of X is a Q-factorial terminal weak Q-Fano 3-
fold such that −KX̃ = π∗(−KX), I(X̃) = I(X), the
exceptional set of π is at most 1-dimensional. Thus
we may assume that X is Q-factorial by working on
X̃ instead of X.

If−KX ·c2(X) ≥ 0 holds, then
∑

(ri−1/ri) ≤ 24
by 2.7 and χ(OX) = 1 and hence 24! is divisible by
the I(X) = l.c.m.{ri}. So it suffices to prove that
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−KX · c2(X) ≥ 0.
Claim 3.1. There is a Q-boundary ∆ such

that
1. −(KX + ∆) is ample,
2. (X,∆) is terminal, and
3. if the anti-canonical morphism g : X → X of
X contracts no divisors, then every irreducible
component of ∆ is movable.
Proof. LetH (resp. H) be a very ample divisor

on X (resp. X) such that f∗H−H is linearly equiv-
alent to an effective divisor D which is very ample
outside the exceptional set of g. We have only to put
∆ := D/m for a sufficiently large natural number m.

Thus by 2.3, we have NM1(X) =
r∑
i=1

R+[li].

Let E := T 1
X . Then c1(E) is nef. Hence by 2.4, it

suffices to prove that E is generically (H1,H2)-semi-
positive for ample divisors Hi(i = 1, 2). Since H1 ·
H2 ∈ NM1(X), we have only to prove c1(L) · li ≥ 0
for each i and every surjection E → L to an arbitrary
torsion free sheaf L.

We can assume that li is obtained as stated in
2.2, with the same notation and assumptions and we
fix i till the end of this section. Furthermore let U
be the open set of X corresponding to U ′ and ∆′ the
strict transform of ∆ on X ′.

We extend T 1
U → L|U/(tor) to T 1

X′ → L′ via
U ' U ′ → X ′. Since X → X ′ is an isomorphism
on U ⊃ li, we have c1(L) · li = ci(L′) · l′i. Thus
our assertion is equivalent to c1(L′) · li′ ≥ 0. Since
ρ(X ′/Y ′) = 1, we may replace {li′} by a covering
family of rational curves {l} of X ′ such that l is con-
tained in a fiber of X ′ → Y ′.

Let π : X̃ ′ → X ′ be the resolution of X ′ and
l̃ the strict transform of l. Since X ′ is Q-factorial,
((∧rL)⊗n)∗∗ is invertible for some n, where r is the
rank of L. Note that we have the natural map

Sn(∧rT 1
X̃′

) → π∗(((∧rL)⊗n)∗∗)

and its restriction to l̃ has a finite cokernel. Hence
by 2.6, c1(L) · l = π∗c1(L) · l′ ≥ 0. This completes
the proof of 1.2 (1).

4. Preliminaries for 1.2 (2).
Lemma 4.1. Let X be an n-dimensional pro-

jective variety and x a closed point with multiplicity
r. Let D be a nef and big Q-Cartier divisor on X

and {l} a covering family of curves containing x such
that D · l ≤ d. Then Dn ≤ rdn.

Proof. Though the proof of [KMM92a, Cor. 1]

was for smooth X, it works in our case with obvious
changes.

Theorem 4.2 (Gluing lemma). Let C1 ∪C2 be
the union of Ci ' P1 intersecting at one point, which
is an ordinary double point of C1 ∪ C2. Let P be a
point on C2 \ C1. Let X be a variety and ν : C1 ∪
C2 → X be a morphism such that li := ν(Ci) are free
rational curves contained in RegX and x := ν(P ) /∈
l1. Then ν deforms to a morphism ν′ : C → X from
C ' P1 such that x ∈ ν′(C). Furthermore we can
choose ν′ so that ν′(C) is a free rational curve.

Proof. This is a special case of [KMM92b, (1.8)
Cor.]. The last assertion is easy since C ' P1.

Remark 4.3. For a projective variety X, we
use 4.2 as follows.

(1) Let {li}(i = 1, 2) be covering families of free
rational curves. We fix a closed point x and choose
l1, l2 so that x ∈ l1\l2 and l1∩l2 contains a point, say
y. Let C1 ∪C2 be as in 4.2 and µ : C1 ∪C2 → l1 ∪ l2
the morphism such that µ|C , are the normalizations.
Let ν be the composition of µ and the embedding
l1 ∪ l2 ↪→ X. We can apply 4.2 for µ with a point
x ∈ l2 \ l1 fixed. Then we obtain a new covering
family of free rational curves {m}.

We say that {m} is obtained by gluing {l1} and
{l2} (with x fixed).

(2) Let l1, . . . , lr (r ≥ 3) be free rational curves
such that l1, . . . , lr form a linear chain and x ∈ l1 \
(l2 ∪ · · · ∪ lr). Let z ∈ lr−2 ∩ lr−1. We can glue lr−1

and lr with z fixed into m 3 z and get a linear chain
l1, . . . , lr−2,m of r − 1 free rational curves.

Construction-Proposition 4.4. Under the
notation and assumptions of 2.5, let C = {l} be a
covering family of rational curves of X such that
l ⊂ RegX. Shrinking the parameter space S, we
will assume all the members of {l} are free rational
curves.

Let π1 = p1|C : C → X and s ∈ p1(C) a (smooth)
closed point of X. Then we construct constructible
subsets V k{l}(x) ⊂ X inductively:

V 0
{l}(x) := {x},

V k+1
{l} (x) := π1π

−1
2 π2π

−1
1 V k{l}(x).

Let V{l}(x) := ∪kV k{l}(x) and, for a subset W , let W
denote the closure. Then we have

V k{l}(x) = V k+1
{l} (x) (∀k ≥ max

n≥0
dimV n{l}(x)).

The proof of [KMM92c, Lem. 1.3] works with
no changes.
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5. Proof of 1.2 (2)-the case ρ(X) = 1.
In this section, we prove the special case of 1.2 (2):

Theorem 5.1. Let X be a Q-factorial termi-
nal Q-Fano 3-fold with ρ(X) = 1. Then

(−KX)3 ≤ 63 · (24!)2.

This was proved in [Kaw92, Thm. 2] with a
possibly different bound. Here we give an alternate
proof by the method of [KMM92a].

Proof. By [MM86, Thm. 5], there is a covering
family of rational curves {l} such that −KX · l ≤ 6.

If {l} has a fixed point x, then by 4.1, we have
(−KX)3 ≤ 63multxX. Since the canonical cover of
(X,x) is at worst a cDV singularity, we have

multxX ≤ 2 · (indexxX)2.

By virtue of 1.2 (1), we have

indexxX ≤ 24!.

Hence (−KX)3 ≤ 63 · (24!)2 in this case.
If {l} has no fixed points, the proof is the same

as the one of [KMM92a, Thm.].
Claim 5.2. V{l}(x) = X for a general closed

point x ∈ X.
Proof of 5.2. Let U be an open set containing

p1(C). Similarly to V k{l}(x), we define constructible
subsets V k{C}(U) ⊂ X × U as follows:

V 0
{C}(U) := {(x, x) ∈ X × U},

V k+1
{C} (U) := Π1Π−1

2 Π2Π1V
k
{C}(U),

where Πi = πi × id. Let V{C}(U) := ∪kV k{C}(U) and
qi the i-th projection of X × U to its i-th factor
(i = 1, 2). Then since V k{C}(U) is constructible, we
can choose an open dense subset U ′ ⊂ U so that
V
k

{C}(U)|q−1
2 (x) = V

k

{l}(x) and hence

V {C}(U)|q−1
2 (x) = V {l}(x)

for all x ∈ U ′ by 4.4.
Assume that the claim fails. Then

d := dimV {C}(U)− dimX < 3.

Let W ⊂ U ′ be a general complete intersection of
codimension d + 1. Then D := q1 ◦ q−1

2 (W ) is of
codimension 1 in X. Note that D \ ∪x∈WV{l}(x) is
of codimension ≥ 2 in X. So by [Kol96, p.115, 3.7
Proposition], we may assume that l is disjoint from
D \ ∪x∈WV{l}(x). If l intersects V{l}(x) for some x,
then l ⊂ V{l}(x) by the definition of V{l}(x). Hence

we may assume that D ∩ l = φ. But this is a contra-
diction since the divisorial part of D is ample.

By 5.2 and 4.4, there is a covering family of
rational curves {l′} with a fixed point x such that
−KX · l′ ≤ 3 × 6. Hence by 4.1, (−KX)3 ≤ 183 in
this case.

6. Proof of 1.2 (2). As we did at the be-
ginning of Section 3, we may assume that X is a
Q-factorial terminal weak Q-Fano threefold to pvove
(2).

Let ∆ be as in 3.1 and g : X ′ → Y ′ an arbitrary
end result of the (KX+∆)-MMP. By the assumption
of (2), every component of ∆ is movable by 3.1.3.
Hence (X ′,∆′) is also terminal, where ∆′ is the strict
transform of ∆.

First we treat the case where ρ(X ′) = 1 for
some X ′. Then X ′ is a Q-factorial terminal Q-
Fano 3-fold with ρ(X ′) = 1. Hence (−KX′)3 ≤
63 · (24!)2 by 5.1. Since h0(−mK) does not de-
crease under (KX + ∆)-MMP for any m, we have
h0(−mKX) ≤ h0(−mKX′). So by the Riemann-
Roch theorem and the Kodaira-Kawamata-Viehweg
vanishing theorem, we have (−KX)3 ≤ (−KX′)3.
Hence (−KX)3 ≤ 63 · (24!)2 in this case.

We are left with the case ρ(X ′) ≥ 2 for all X ′.
Thus, for any coextremal ray R+[l], the target Y ′

of the associated log Mori fiber space g : X ′ → Y ′

is not a point. Since X ′ is terminal, general fibers
of g are smooth rational curves or smooth del Pezzo
surfaces. Hence we can take as l smooth free rational
curves such that −KX · l ≤ 3.

Since dim NM1(X) ⊗ R = ρ(X) ≥ 2, we know
that NM1(X) has at least 2 coextremal rays. Let
R+[l1] and R+[l2] be two of them. Let x be a general
point of X and Vi := V{li}(x). It suffices to treat
three cases:
(i) dimVi = 1 for i = 1, 2,

(ii) dimV1 = 2 and dimV2 ≤ 2, and

(iii) dimV1 = 3.
In case (i), the dimension of a fiber of gi is 1

and hence −KX · li ≤ 2. By gluing {l1} and {l2}, we
obtain a new covering family {l3} such that −KX ·
l3 ≤ 4 and dimV 1

{l3}(x) > dimV 1
{l1}(x) = 1. Let

V 1
3 := V 1

{l3}(x).

We first treat the case dimV 1
3 = 2. Since V 1

3 ∈
NE1(X), there is a coextremal ray R+[m] such that
V 1

3 ·m > 0. As seen above, we can take as m smooth
free rational curves with −KX · m ≤ 3. We can
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assume l3 ∩m 6= ∅. By gluing {l3} and {m} with x

fixed, we obtain smooth free rational curves l4 3 x

such that −KX · l4 ≤ 7 and dimV 1
{l4} > dimV 1

3 = 2.
Hence by 4.1, we have (−KX)3 ≤ 73.

If dimV 1
3 = 3, we have (−KX)3 ≤ 43 by 4.1.

In case (ii), by gluing {l1} and {l1} and {l2}, we
obtain a new covering family {l3} such that −KX ·
l3 ≤ 9 and dimV 1

{l3}(x) = 3. Hence by 4.1, we have
(−KX)3 ≤ 93.

In case (iii), we have (−KX)3 ≤ (3× 3)3 by 4.1.
Hence we have (−KX)3 ≤ 63 · (24!)2, and the

proof of (2) is finished.
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