
16 Proc. Japan Acad., 76, Ser. A (2000) [Vol. 76(A),

On the Diophantine equation x(x + 1) · · · (x + n) + 1 = y2
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Abstract: Let N denote the set of natural numbers {1, 2, 3, . . .}. n being an odd natural
number, we consider the Diophantine equation as mentioned in the title and solve it completely
for n ≤ 15, i.e. find all (x, y) ∈ N2 satisfying this equation.
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1. Introduction. It was shown by Erdös
and Serfridge [1] that the product of consecutive in-
tegers is never a power, so that the Diophantine
equation x(x + 1) · · · (x + n) = y2 has no solution,
but we do not know if the Diophantine equation
x(x+ 1) · · · (x+ n) + 1 = y2 has hitherto been ever
treated. We shall consider it in this paper for the case
n is odd and solve it completely for the case n ≤ 15.
We shall put Fn(x) = x(x + 1) · · · (x + n) + 1. This
is a monic polynomial with integral coefficients of an
even degree n+ 1. Put m = (n+ 1)/2. As solutions
of a Diophantine equation in x, y, we shall always
mean (x, y) ∈ N2 satisfying it. We have obtained
the following

Theorem.
(1) F1(x) = y2 has no solution.
(2) F3(x) = y2 has an infinite number of solutions:

x can take any element x of N, y = x2 +3x+1.
(3) F5(x) = y2 has only one solution (x, y) =

(2, 71).
(4) Fn(x) = y2 with odd n has no solution for 7 ≤

n ≤ 15.
Remark 1. We should like to conjecture that

Fn(x) = y2 with odd n has no solution also for n ≥
17, but we could not yet prove it.

Remark 2. Our proof of this theorem for the
case n ≥ 5 is based on a principle in solving Diophan-
tine equations of the form F (x) = y2, where F (x) is
a monic integral polynomial of an even degree, which
will be explained in the following paragraph.

2. A principle. Let F (x) be a monic inte-
gral polynomial of an even degree 2m. To find solu-
tions (x, y) ∈ N2 of F (x) = y2, one can proceed as
follows:
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Put F (x) = x2m + a1x
2m−1 + · · ·+ a2m ∈ Z[x].

We can obtain a monic polynomial G(x) = xm +
b1x

m−1 + · · · + bm ∈ Q[x] and another polynomial
R(x) ∈ Q[x] whose degree degR < m, such that
F (x) = (G(x))2 + R(x) (uniquely by the method of
indeterminate coefficients). In fact, the denomina-
tors of the coefficients of G,R are the powers of 2.
We shall denote by ε the inverse number of the max-
imum of these denominators when G(x) 6∈ Z[x] and
put ε = 1 when G(x) ∈ Z[x].

Put now for x ∈ N

Y (x) =

{
[G(x)] when G(x) 6∈ Z[x],

G(x)− 1 when G(x) ∈ Z[x],

so that Y : Z → Z. Notice that ε < 1 or ε = 1
according as G(x) 6∈ Z[x] or ∈ Z[x], and in the first
case

ε ≤ G(x)− Y (x) ≤ 1− ε.

If we could prove the existence of some x0 ∈ N,
such that

(∗) (Y (x))2 < F (x) < (Y (x) + 1)2

holds for all x ≥ x0, then for any possible solution
(x, y) of F (x) = y2, we should have x < x0, and
these x could be found by a computer (if x0 is not
so large). The existence of number x0 for F = Fn,
5 ≤ n ≤ 15 will be shown in the following paragraph
for individual cases.

3. Proof of the theorem. We shall omit
the proof of (1), (2) which is immediate, and de-
scribe first the proof of (3) in detail.

In that case, we obtain

G(x) = x3 +
15
2
x2 +

115
8
x+

75
16



No. 2] x(x + 1) · · · (x + n) + 1 = y2 17

so that ε = 1/16, and

Y (x) ≤ G(x)− ε < G(x) + ε ≤ Y (x) + 1.

By calculation, we have

(G(x) + ε)2 − F (x)

=
1
8
x3 +

249
64

x2 +
265
16

x+
345
16

> 0,

F (x)− (G(x)− ε)2

=
1
8
x3 − 129

64
x2 − 415

32
x− 1304

64
,

of which the last polynomial has only one root be-
tween 21 and 22 (by Descartes’ rule) so that (∗) holds
for x ≥ 22. The rest of the proof is done by a com-
puter.

The proof of the cases n = 9, 11, 13 is done in
the same way, the values of ε and x0 in each case
being as follows:

n 9 11 13
ε 1/256 1/2 1/2048
x0 20277 88 20606985

In the cases n = 7, 15 we obtain G(x) ∈ Z[x],
ε = 1. The concrete forms of G(x) in respective cases
are:

x4 + 14x3 + 63x2 + 98x+ 28 if n = 7

x8 + 60x7 + 1490x6 + 19800x5 + 151761x4

+ 671580x3 + 1609180x2 + 1741200x+ 430016

if n = 15

and the values of x0 are 4, 1015, respectively.
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