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Global existence of solutions to the Proudman–Johnson equation

By Xinfu Chen
∗) and Hisashi Okamoto

∗∗)

(Communicated by Heisuke Hironaka, m. j. a., Nov. 13, 2000)

Abstract: We show that there is no blow-up solutions, for positive viscosity constant ν,
to the equation fxxt − νfxxxx + ffxxx − fxfxx = 0, x ∈ (0, 1), t > 0 with (i) periodic boundary
condition, or (ii) Dirichlet boundary condition f = fx = 0 or (iii) Neumann boundary condition
f = fxx = 0 on the boundary x = 0, 1. Furthermore we show that every solution decays to the
trivial steady state as t goes to infinity.
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1. Introduction. We consider the
Proudman–Johnson equation, for f = f(x, t),

fxxt − νfxxxx + f fxxx − fx fxx = 0,(1.1)

x ∈ (0, 1), t > 0

with one of the following homogeneous boundary
conditions:

f is periodic in x and
∫ 1

0

f(x, t)dx = 0;(PBC)

f(0, t) = f(1, t) = fx(0, t) = fx(1, t) = 0;(DBC)

f(0, t) = f(1, t) = fxx(0, t) = fxx(1, t) = 0.(NBC)

Here ν > 0 is a constant called viscosity, t the time
variable, x the space, and subscripts stand for differ-
entiation.

Equation (1.1) is derived from the Navier–
Stokes equations by assuming a special form of
the velocity field u(x, y, t) = (f,−yfx) and con-
sidering the flow in a two-dimensional channel; see
[5, 9, 13, 8, 1, 3, 4, 7, 12] and the references therein.
The boundary condition (DBC) corresponds to the
Dirichlet boundary condition u = 0. The bound-
ary condition (NBC), having its own meaning in
the Navier–Stokes flow, can also be derived from a
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magneto-hydrodynamic flow (see, for example, [6]).
The periodic boundary condition (PBC) is often used
in numerical simulations.

Childress et al. [1] in 1989 first reported that
numerical solutions to (1.1) and (DBC) with large
initial data blow-up in finite time. Later Cox [3]
clarified that grid refinement could remove singulari-
ties. Grundy and McLaughlin [4], on the other hand,
considered a non–homogeneous version of (NBC),
demonstrated numerically the existence of blow-up
solutions, and also derived asymptotically the sin-
gular behavior of the solutions near blow-up time.
Recently, Okamoto and Shoji [10, 11] and Zhu [14]
claimed that they cannot find any numerical blow–
up solutions of (1.1) and (DBC). Very recently,
Okamoto and Zhu [12] provided strong evidence
showing that there is no blow-up for (1.1) with the
homogeneous boundary conditions. Since the work
of Childress et al. [1], it has been asked repeatedly
whether solutions to (1.1) and (DBC) blow-up in fi-
nite time or not (see, for example, Constantin [2]).
The purpose of this paper is to answer such a ques-
tion.

Theorem. For any f0 ∈ C4([0, 1]) (
∫ 1

0
f0(x)dx

= 0 in case of (PBC) ), there exists a unique solution
f(x, t) ∈ C∞([0, 1]×(0,∞)) to (1.1) with initial data
f(·, 0) = f0(·) and one of the homogeneous boundary
conditions (PBC), (DBC) or (NBC). In addition,

lim
t→∞ f(·, t) = 0.

Remark. In a forthcoming paper, we shall
prove the global (in time) existence of solutions
for the generalized Proudman–Johnson equation (see
[12] for the derivation)

fxxt − fxxxx + f fxxx − afxfxx = 0
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for a real parameter a ∈ [−3, 1] with (PBC) or
(NBC). When a �∈ [−3, 1], it is expected that so-
lutions can blow up.

2. Proof of the Theorem.
Step 1. For smooth initial data, say in

C2([0, 1]), local (in time) existence of unique solu-
tion to (1.1) with one of the boundary conditions
(PBC), (DBC) or (NBC) follows from a standard
parabolic theory. Also, via energy estimates (cf. ex-
amples in Step 5), one can show that all the higher
order derivatives are bounded by the initial data and
max |f |. Hence, to prove the global existence, we
need only estimate, a priori, max |f |.

We assume that f0 �≡ 0, so that f(·, t) �≡ 0 for
all t in its existence interval. We use ‖ · ‖p to denote
the Lp((0, 1)) norm, for 1 ≤ p ≤ ∞.

Step 2. First we show that max |f | can be es-
timated by the minimum of fxxx. For this, we intro-
duce

m(t) = min
x∈[0,1]

{fxxx(x, t)}.

(i) If we have (PBC) or (NBC) boundary con-
dition, then

∫ 1

0
fxxxdx = 0 and

‖fxx(·, t)‖∞ ≤
∫ 1

0

|fxxx(x, t)| dx

=
∫ 1

0

(
|fxxx| − fxxx

)
dx ≤ −2m(t).

As a function of x, ±f − (1/2)‖fxx‖∞x(1 − x) is
convex (second order derivative non-negative) and
has boundary value zero, so it must be non–positive.
Hence,

‖f(·, t)‖∞ ≤
1
8
‖fxx(·, t)‖∞ ≤ −

1
4
m(t).

(ii) Next we consider the (DBC) boundary
condition. In this case, as a function of x, fx +
(1/2)m(t)x(1 − x) is convex and has boundary
value zero, so it is non–positive. Thus, fx ≤
−(1/2)m(t)x(1− x). Consequently,

‖f(·, t)‖∞ ≤
∫ 1

0

|fx| dx =
∫ 1

0

(
|fx|+ fx

)
dx

≤ − 1
6
m(t).

Step 3. Now we show that m(t) is bounded
from below, uniformly in t.

Differentiating (1.1) with respect to x and set-

ting u = fxxx we obtain

ut − νuxx + f ux = f2
xx ≥ 0.(2.1)

Thus, a maximum principle implies that the min-
imum of u can only be obtained at the parabolic
boundary; namely, for any 0 ≤ τ < t,

min
[0,1]×[τ,t]

{u}

= min
{

min
[0,1]
{u(·, τ)}, min

s∈[τ,t]
{u(0, s), u(1, s)}

}
.

In order to estimate m(t), it remains to show that u
cannot obtain its minimum on the lateral parabolic
boundary.

(i) Suppose we have (PBC), the periodic
boundary condition. Then by shifting the spatial
region x ∈ (0, 1) if necessary, we conclude that u
cannot obtain its minimum at the lateral parabolic
boundary so that

m(t)> m(τ) ≥ m(0) = min
[0,1]
{fxxx(·, 0)}(2.2)

∀ t > τ ≥ 0.

(ii) Next, suppose we have (NBC), the Neu-
mann boundary condition. From (1.1), we see that
ux = fxxxx = 0 at the boundary x = 0, 1, so that
the minimum of u cannot be obtained at the lateral
parabolic boundary. Hence, (2.2) still holds.

(iii) Finally we consider (DBC), the Dirichlet
boundary condition. For this, we need more work
than that in the early cases.

Integrating (1.1) over x gives

fxt − νfxxx + f fxx − f2
x + γ(t)ν = 0(2.3)

where the combined γν is an integration constant.
Upon evaluating the equation at the boundary x = 0
and x = 1, we see that

γ(t) = fxxx(0, t) = fxxx(1, t).(2.4)

(Childress et al. [1] already observed this rela-
tion.) Now integrating (2.3) over (0, 1) and using∫ 1

0
fx(x, t)dx = 0 we obtain∫ 1

0

{γ − fxxx(x, t)} dx = 2ν−1

∫ 1

0

f2
x > 0.(2.5)

This equation, together with (2.4), shows that the
minimum of fxxx is strictly smaller than γ, the
boundary value of fxxx. Therefore, (2.2) still holds.

Combining estimates in Steps 2 and 3, we obtain
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an a priori estimate

(2.6) ‖f(·, t)‖∞ ≤ −
1
4
m(t) ≤ −1

4
min
[0,1]
{fxxx(x, 0)}

for all t in its existence interval. From this, we see
that any solution will not blow up, and exists globally
in t.

Step 4. Now we show that any solution decays
to zero as t → ∞. Step 3 shows that m(t) is an
increasing and negative function. Hence m(∞) :=
limt→∞m(t) exists. In view of (2.6), we need only
show that m(∞) = 0.

Suppose, to the contrary, that m(∞) < 0. We
shall show in Step 5 that {f(·, t)}t>1 is a bounded
family in C4([0, 1]). Hence, we can find a sequence
{tj}∞j=1 such that as j →∞, tj →∞ and f(·, tj)→
f∗0 in C3([0, 1]) for some smooth f∗0 �≡ 0. Then as
j → ∞, m(tj + t) → m∗(t) for all finite t ≥ 0
where m∗(t) = min[0,1] f

∗
xxx(·, t) and f∗ is the so-

lution to (1.1) with initial data f∗0 . As f∗0 is non–
trivial, m∗(1)−m∗(0) > 0. This contradicts the fact
thatm∗(1)−m∗(0) = limj→∞(m(tj+1)−m(tj)) = 0.
Thus, f → 0 as t→∞.

Step 5. It remains to show that {f(·, t)}t>1 is
a bounded family in C4([0, 1]), which follows from en-
ergy estimates. Here we provide, as an example, the
estimate from ‖f‖L∞(0,1)×(0,∞) to supt>0 ‖fx(·, t)‖2
and supt>0 ‖fxx(·, t)‖2.

First multiplying (1.1) by 2f and integrating the
resulting equation over x ∈ (0, 1), we obtain, after
integration by parts and using the boundary condi-
tions,

d

dt
‖fx‖22 + 2ν‖fxx‖22 = −3

∫ 1

0

f fxfxx.(2.7)

Since ‖ffx‖22 = (1/3)‖f3fxx‖1 ≤ (1/3)‖f‖36 ‖fxx‖2,

3‖f fxfxx‖1 ≤ 3‖ffx‖2‖fxx‖2 ≤
√

3‖f‖3/2
6 ‖fxx‖3/2

2

≤ ν‖fxx‖2 + ν−3‖f‖66.
Therefore,

d

dt
‖fx‖22 + ν‖fxx‖22 ≤ ν−3‖f‖66.

Multiplying both sides by eνt and using ‖fx‖2 ≤
‖fxx‖2 yields d/dt(eνt‖fx‖22) ≤ ν−3eνt‖f‖66, which
gives, after integration,

‖fx(·, t)‖22 ≤ ν−4‖f‖6L∞([0,1]×[0,∞)) + e−νt‖fx(·, 0)‖22.

This gives a bound on supt≥0 ‖fx(·, t)‖2.
In a similar manner, e.g., multiplying the dif-

ferential equation for ∂k
xf by ∂k

xf , k = 2, 3, . . ., one

can establish estimates, uniform in t, for high order
derivatives. When the boundary conditions are ei-
ther (PBC) or (NBC), the proof is standard and is
omitted. Here we provide only an estimate for fxx,
when the boundary conditions are (DBC).

Denote fxxx =
∫ 1

0
fxxxdx and f2

x =
∫ 1

0
f2

xdx, the
average of fxxx and f2

x respectively. Then the equa-
tion in (2.5) reads γ = fxxx + 2ν−1f2

x . Multiplying
both sides of (2.3) by 2(fxxx− fxxx) and integrating
over x ∈ (0, 1), we obtain, after integrating by parts
and using fx = 0 on the boundary,

d

dt
‖fxx‖22 + 2ν‖fxxx − fxxx‖22(2.8)

=
∫ 1

0

(
fxxx − fxxx

)(
ffxx − f2

x + 2f2
x

)
.

Note that ‖fxx‖22 = −
∫ 1

0
fx(fxxx − fxxx) ≤

‖fx‖2‖fxxx−fxxx‖2 and ‖fx‖22 ≤ ‖f‖2‖fxx‖2, so that

‖fxx‖2 ≤ ‖f‖1/3
2 ‖fxxx − fxxx‖2/3

2 .

In a similar manner, the right-hand side of (2.8) is
bounded by 4‖f‖5/3

∞ ‖fxxx − fxxx‖4/3
2 . Hence, after

using Young’s inequality, we obtain

d

dt
‖fxx‖2 + ν‖fxx‖22 ≤ C(ν, ‖f‖∞).

Same as before, multiplying both sides by eνt and
integrating over (0, t) gives

‖fxx‖22 ≤ e−νt‖fxx(·, 0)‖22 + C(‖f‖L∞((0,1)×(0,t))).

The higher order derivatives can be similarly esti-
mated. We omit the details. This concludes the
proof.
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