On the rank of elliptic curves with a reational point of order 3

By Shoichi Kihara

Department of Neuropsychiatry, School of Medicine, Tokushima University, 2-50-1, Kuramoto, Tokushima 770-8503
(Communicated by Shokichi IYANAGA, M. J. A., Oct. 12, 2000)

Abstract: We construct an elliptic curve over $\mathbf{Q}(t)$ of rank at least 6 with a rational point of order 3 .

Key words: Elliptic curve; rank ; point of order 3.

In this paper we consider the rank of elliptic curves with a rational point of order 3 over \mathbf{Q}.

The elliptic curves of the form
ε

$$
y^{2}=a x^{3}+(b x-c)^{2}
$$

has a rational point $\mathrm{P}=(0, c)$ of order 3 .
Top showed this type of curves with rank 3 in [3].

Also Campbell showed this type of curves with rank at least 3 over $\mathbf{Q}(t)$ in [1].

We improve these results, and prove the
Theorem. There are infinitely many elliptic curves over \mathbf{Q} of rank at least 6 with a non-trivial rational point of order 3 .

We shall construct an elliptic curve ε_{0} over $\mathbf{Q}(t)$ with 6 points $\mathrm{P}_{1}, \ldots, \mathrm{P}_{6}$.

Let $f(x)=x^{3} /(x-1)^{2}, g(t)=\left(t^{2}+3\right) / 4$ and $h=f \circ g$, then the equation $f(x)=h(t)$ have the solutions,

$$
x=\frac{t^{2}+3}{(t+1)^{2}}, \frac{t^{2}+3}{(t-1)^{2}} \quad \text { and } \quad \frac{t^{2}+3}{4}
$$

Next let $a_{1}=0, a_{2}=h(2), a_{3}=h(4)$ and $a_{4}=h(t)$.

We consider the polynomial $F(X)=\prod_{i=1}^{4}(X-$ $\left.a_{i}\right) \in K[X]$ of the 4th degree where $K=\mathbf{Q}(t)$. There exist uniquely $G(X), r(X) \in K[X]$ of degree 2,1 , respectively such that $F(X)=(G(X))^{2}-r(X)$.

In this way we have the following,

$$
r(X)=\frac{A(t) X+B(t)^{2}}{2^{14} 3^{4} 5^{8}\left(t^{2}-1\right)^{8}}
$$

where

[^0]\[

$$
\begin{aligned}
A(t)= & 800 *\left(225 t^{6}-13409 t^{4}+36943 t^{2}-9359\right) \\
& *\left(75 t^{6}+103 t^{4}+3169 t^{2}+1453\right) \\
& *\left(75 t^{6}+1247 t^{4}+881 t^{2}+2597\right) \\
& *(t+1)^{2}(t-1)^{2} \\
B(t)= & 5625 t^{12}-670450 t^{10}-4315341 t^{8} \\
& -5988236 t^{6}+22688079 t^{4}+27728414 t^{2} \\
& -16408091
\end{aligned}
$$
\]

Let $s(x)=\left(A(t) * f(x)+B(t)^{2}\right) *(x-1)^{2}=$ $A(t) x^{3}+(B(t) x-B(t))^{2}$ and at last we have the following elliptic curve
$\varepsilon_{0} \quad y^{2}=A(t) x^{3}+(B(t) x-B(t))^{2}$.
There are following 6 points on this curve

$$
\begin{aligned}
\mathrm{P}_{1}= & \left(\frac{7}{9}, \frac{2}{9} *\left(5625 t^{12}+187050 t^{10}-\frac{14558123}{3} t^{8}\right.\right. \\
& +\frac{86238692}{3} t^{6}-31986121 t^{4}+\frac{92206142}{3} t^{2} \\
& \left.\left.+\frac{613627}{3}\right)\right) \cdot \\
\mathrm{P}_{2}= & \left(7,6 *\left(5625 t^{12}+187050 t^{10}-\frac{14558123}{3} t^{8}\right.\right. \\
& +\frac{86238692}{3} t^{6}-31986121 t^{4}+\frac{92206142}{3} t^{2} \\
& \left.\left.+\frac{613627}{3}\right)\right) \cdot \\
\mathrm{P}_{3}= & \left(\frac{19}{4}, \frac{15}{4} *\left(5625 t^{12}+15450 t^{10}+\frac{17151269}{3} t^{8}\right.\right. \\
& -\frac{60161276}{3} t^{6}+41728663 t^{4}-\frac{35146226}{3} t^{2} \\
& \left.\left.+\frac{22027019}{3}\right)\right) .
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{P}_{4}= & \left(\frac{19}{9}, \frac{10}{9} *\left(5625 t^{12}+15450 t^{10}+\frac{17151269}{3} t^{8}\right.\right. \\
& -\frac{60161276}{3} t^{6}+41728663 t^{4}-\frac{35146226}{3} t^{2} \\
& \left.\left.+\frac{22027019}{3}\right)\right) . \\
\mathrm{P}_{5}= & \left(\frac{t^{2}+3}{(t-1)^{2}}, \frac{2(t+1)}{(t-1)^{2}} *\left(16875 t^{12}-467950 t^{10}\right.\right. \\
& -3450959 t^{8}+2704236 t^{6}+32430621 t^{4} \\
& \left.\left.+46748386 t^{2}-8861209\right)\right) . \\
\mathrm{P}_{6}= & \left(\frac{t^{2}+3}{(t+1)^{2}}, \frac{2(t-1)}{(t+1)^{2}} *\left(16875 t^{12}-467950 t^{10}\right.\right. \\
& -3450959 t^{8}+2704236 t^{6}+32430621 t^{4} \\
& \left.\left.+46748386 t^{2}-8861209\right)\right) .
\end{aligned}
$$

Now we prove

Proposition. $\mathbf{Q}(t)$ - rank of ε_{0} is at least 6

Proof. We specialize $t=11$. Then we have 6 rational points $\mathrm{R}_{1}, \ldots, \mathrm{R}_{6}$ obtained from $\mathrm{P}_{1}, \ldots, \mathrm{P}_{6}$. By using calculation system PARI, we see that the determinant of the matrix $\left(\left\langle R_{i}, R_{j}\right\rangle\right)(1 \leq i, j \leq 6)$ associated to the canonical height is 521684.98 . Since this determinant is non-zero, we see $\mathrm{P}_{1}, \ldots, \mathrm{P}_{6}$ are independent.

Now this Proposition and Theorem 20.3 in [2] establish our Theorem.

References

[1] Campbell, G.: Finding elliptic curves and infinite families of elliptic curves defined over \mathbf{Q} of large rank (1999) (Ph. D. Thesis, Rutgers University).
[2] Silverman, J. H.: The arithmetic of elliptic curves. Grad. Texts in Math., vol. 106, Springer, New York (1986).
[3] Top, J.: Descent by 3-isogeny and 3-rank of quadratic fields. Advances in Number Theory. Oxford Science Publications, Oxford Univ. Press, Oxford, pp. 303-317 (1993).

[^0]: 1991 Mathematics Subject Classification. Primary 11G05.

