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On certain real quadratic fields with class number one
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Abstract: In this paper, new five real quadratic fields with norm of fundamental unit +1
and class number one are obtained.
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Throughout this paper, we denote by N the set
of positive rational integers, and N0 = N ∪ {0}. Z
will mean as usual the set of rational integers. For a
square-free D ∈ N, the real quadratic field Q(

√
D)

will be denoted by k, its class number by hk and its
fundamental unit > 1 by εD = (t + u

√
D)/2. The

norm map from k to Q will be denoted by N .
The class number one problem requires to deter-

mine the set of all D for which hk = 1 under certain
conditions. Let p be prime congruent to 1 mod 4
and εp = (up + tp

√
p)/2 > 1 be the fundamental

unit of the real quadratic field Q(
√

p). In [6] Yokoi
showed that there exist exactly 30 real quadratic
fields Q(

√
p) of class number one satisfying εp < 2p

with one more possible exception of prime discrim-
inant p. In [2] Katayama-Katayama showed that
there exist at most 44 real quadratic fields Q(

√
p)

with class number one for 1 ≤ up ≤ 300. In [4]
Mollin-Williams solved (except possibly one value)
class number one problem for the more general ex-
tended Richaud-Degert (i.e. with D = m2 + r where
4m ≡ 0 (mod r)) and in [5] they gave a complete
generalized form of Yokoi’s p-invariants for arbitrary
real quadratic field Q(

√
D) and all Q(

√
D) having

class number one with nD 6= 0 (nD is defined in [5]).
In this paper, using the same way as in [1], we

shall show that there are new five real quadratic
fields with class number one for the case NεD = 1,
1 ≤ u ≤ 100.

The letters N, N0, D, εD, t, u will always keep
the meanings explained above and n ∈ N0.

Theorem. With the above notations, there ex-
ist new five real quadratic fields Q(

√
D) with class

number one for 1 ≤ u ≤ 100, where D are those in
Table with one possible exception.
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Proof. Using a similar way as in Prop. 1 in
[1], one can find a real number υ(u) such that
hk > 1 for n ≥ v(u). In fact, we may take
υ(u) ≥

√
4 + u2ec(u)/u2. Moreover, we can choose

c(u) < 14.7 for 1 ≤ u ≤ 100. By the help of com-
puter we obtain υ(u) = 1557/u.

Let q be an odd prime with (D/q) = 1. If hk =
1, then we can obtain q ≥ n in a similar way as in
the proof of Prop. 2 in [1].

In the case hk = 1, it is also known that if q1,
q2 of distinct prime factors of D such that q2 ≡ 3
(mod 4) then D satisfies one of the following condi-
tions:

i) D = q1, ii) D = q1q2, iii) D = 2q2.
By the help of a computer and using Kida’s

UBASIC 86, we can list up the Table of the five
D satisfying the above necessary conditions with
hk = 1.

Table

u D

40 57
77 893
78 19
84 22
85 1397

Remark. The real quadratic fields with class
number one which are defined by Mollin and
Williams in [5] can be obtained with the above the-
orem too.
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