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1. Introduction. We define the “Lapla-
cian” or the “adjacency matrix” of a category C via

A(C) = (#Homc(X, Y))X,Yeob(c)

where Ob(C) is the “set” (or “class”) of objects, and
# denotes the cardinality. This notion is borrowed
from the graph theory (cf. Biggs [1]), since a category
is a certain “oriented graph” satisfying the associa-
tive law for edges (morphisms).

We are especially interested in the most basic
case where C is consisting of abelian groups or mod-
ules. For convenience, when we are treating the cate-
gory C consisting of finite abelian groups A;, ..., A,,
we denote the Laplacian A(C) concretely as

A(Ay,..., A,) = (FHom(4;, 4;))

where i,j = 1,...,n. More generally, for (left) R-

modules M, ..., M, over a ring R, we simply write
the associated Laplacian as

Ar(My,...

Naturally A(A4,..

. M,) = (*Homp(M;, M;)) .
9 An) = AZ(*Ala cey An)

We hope to study the spectra (eigenvalues)
SpectA(C) of A(C). In general we expect that A(C)
behaves like the classical Laplacian appearing in the
differential geometry. In particular, A(C) would be
symmetric and semi-positive, and the spectra would
be distributed as usual.

Here we restrict ourselves to the case of
A(Ay,...,A,) and Ag(My,..., M,) as well as their
behavior as n — oo. Main results are as follows.
First:

Theorem 1. For finite abelian groups Aq, ...,
An, A(Ay, ..., Ay) is a symmetric matriz.

We conjecture that A(Ag,...,A,) is semi-
positive.  (The case n = 2 is proved in [3].)
The next result gives an affirmative answer for
A(F)", ... F/") where p is a prime.

Theorem 2. Let F, be a finite field of q ele-
ments. Then

Ap, (F/", . . F") = (¢™™)

is a semi-positive matrixz for integers m; > 0.
Finally we examine the behavior of spectra as
n — oo in a simple situation.
Theorem 3. Let p, be the n-th prime. Then
the spectra Aﬁ") < Aé”) < < A of
A(Z/;Z,...,Z/p,Z) are all simple and located as

(n)

1< Pep—1<AM< i cp,—1< 2,

In particular, A(Z/mZ,...,Z/p,2Z) is a pos-
itive matrixz. Moreover, for each fixed m > 1, we
have

lim )\5,?) =pm — 1.

n—o0

We remark that the convergence is very slow.
For example lim )\(1") =1, but )\(1100) = 1.25467-- -,

)\gwoo) =1.23294 - - -, and roughly
1
AW arp——
1 + loglogn

as analyzed later.

It is well-known that spectra of Laplacians ex-
plain zeros and poles of zeta functions for Rieman-
nian manifolds and graphs. Relations to categorical
zeta functions in the direction of [2] will be treated
at another occasion.

2. Symmetry. We prove Theorem 1. It is
sufficient to prove the following

Lemma 1. Let A and B be finite abelian
groups, then

#Hom(A, B) = #Hom(B, A).
Proof Let A=Hom(A, Q/Z), B=Hom(B, Q/Z)

be the dual abelian groups. (We describe abelian
groups additively.) There is a natural homomor-

phism
¢: Hom(4,B) — Hom(B,A)
w w
f —  o(f)
defined via

o(f)(x) =xof for y € B.
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This ¢ is an injection. In fact, suppose f # 0,
then there is an element a € A satisfying f(a) # 0.
Then it is well-known that there exists a character

x € B such that x (f(a)) # 0. Hence o(f) # 0.
Thus ¢ is injective, so

#Hom(A, B) < #Hom(B, A).
Similarly, by duality,
#Hom(B, A) < #Hom(;l, é) = #Hom(A, B).
Hence we have
#Hom(A, B) = #Hom(B, A).

Since A = A and B = B as abelian groups (non-
canonically), we have

#Hom(A, B) = #Hom(B, A).

]

3. Positivity. Let us prove Theorem 2.
First the fact

A, (B, . Fr) = (q"™™)

is seen from
#Homp, (Fy", F ") = *My, m, (Fg) = g™

To show the positivity, (by induction) it is suf-
ficient to see that det Ap, (F(}“ ) ,F(;”")EO. If
mi, ..., My are not distinct, det Ag, (qul, ey F;””)
= 0, so we may assume that mq, ..., m, are distinct,
and moreover (by changing the order if necessary)

that m; < --- < m,. Using the Vandermonde deter-
minant we see that the matrix R = (¢); j—o,...,m, of
size m, + 1 is positive. Since Ap, (F;”l, .,qu")

is a submatrix of R of size n, it is positive also. []
Remark 1. The above proof can be general—

ized to show that the matrix R, = (¢ ); j=1..

is semi-positive for real numbers mq,...,m, and a

real ¢ > 1. In fact, it is sufficient to show that

R, >0 when my < --- < my. Put m}, =m; —

R, = (qm;m.;), and z; = g,

ated quadratic form is

my,
Then the associ-

Xy Ty

Rol| i ||= 2 am ™ we; =q" R,

%7 ’
Tn Ty

So we can assume that 0 = m; < mag < --+ < My,
Now, if mq, ..., m, are integers, R, > 0 by the proof
of Theorem 2. Next, suppose that mq,...,m, are
rational numbers. Taking an integer N > 0 making
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Nm; (i=1,...,n) integers, we see R, > 0 since

R, — ((ql/NQ)mmi)(ij)) .

Finally, real numbers my, ..., m, are limits of ratio-

nal numbers, so R,, > 0.

Remark 2. Since

2 2
= (¢" —1)(¢" (¢ — 1)%,
we see the equivalence

det Ap, (FZ,FY,0) >0
2 2
<= (¢ - D¢V —1) = (¢"

—1)-

—1)%

This reminds us of the so-called g-analogue. Let g >
1. For a real number z, the “g-analogue” [z], of z is
defined as

(Recall that we recover the usual situation via ¢ | 1:
limg)1[z]; = x.) In this notation, from Theorem 2
and Remark 1 we have

(*) [wz]q[yz}q

for all real numbers z,y > 0.
Moreover, the “g-Cauchy inequality”

> [ay]?

(%) [x%+"'+xi]q[y§+”'+yi]q
> [z + mnyn]g
holds for real numbers x1, ..., Zn,y1,. .., Y, and real

q > 1. These are directly proved as follows.

Proof of (x). Put u:x/\/ log q, v=y /4/ loggq.

Then (x) is equivalent to

(e —1)(e¥ —1) > (e®™ —1)2.

This inequality is seen from

(" - )( >< —1p?
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I
DN =
(]
|-

(e

itj=n
i,j =1

3
[
N

I

DN | =
[~
|-

= ()ew-owr

itj=n
i,j=>1

3
Il
N

]

Proof of (xx). Put z = +a2,y =

y? + -+ y2. Then, by () :
[2% + -+ aplalyl + - +ynle = [2°]aly%)g 2 [2yl;-

The usual Cauchy inequality gives

ry > \$1y1 ++$nyn‘7
so it is easy to see
[xy]g 2 [$1y1 +eee xnyn}g

(Notice : ¢* — 1 > ’qb — 1’ for real a,b satisfy-

ing a > |b], since |¢" —1| = Zflw <

> [b["(log 9)™ (logq <y e (I%M) =q*—1) ]
4. Spectra We prove Theorem 3 in a
slightly generalized form :
Lemma 2. Let1 < a3 <as <--- T oo, and
assume that Y oo a;' = oco. Put
a; 1 - 1
1
R, =
o
1 1 a,
Then the spectra
SpectR,, = {A@, A
are simple and located as
a—1<A<ca-1<AV<ica, -1 <A,

Moreover, for each fized m > 1, we have

lim A\ =

m
n— o0

Proof. Let fn(z) =Y " (x—a;+1)"!. We first
show inductively that the characteristic function is

apm — 1.

n

[[@-a+n{1

1

det(z — R,) = — fulz)}

n

(x—a;+1)— ZH(x—ai—i—l).

j=1i#j

i

3

.
Il
i
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Fig. 1. The graph of y = fr(x) —
In fact :
det(z — R,)
T —ay -1 -1 -1
—1 T — a2 —1 —1
= det —1 —1 T — as
: : —1
—1 —1 -1 =z —an
T —ay -1 -1 -1 ar —1—=x
-1 T — az -1 -1 0
= det —1 —1 T — as
: : o 0
—1 —1 -1 z—an_1 0
—1 —1 —1 —1 T — an + 1
=(x—a,+1)det(r — Rp—1) + (—1)"(z — a1 + 1)
-1 z—a2 -1 -1 .- -1
-1 -1 r—az —1 --- -1
xdet |t ! -1
: : - .
-1 —1 -1 -1 z—ap—1
-1 -1 -1 -1 -1
=(z—a,+1)det(z — Rp—1) + (-1)"(z —a1 + 1)
0 z—asx+1 0 o .- 0
0 0 z—az+1 0 - 0
xdet | © 0 0
: : PR 0
0 0 0 0 z—apn-1+1
—1 —1 . -1 -1 —1
= (x —an+1)det(x — R,—1)
—(z—a1+1)-(z—ap_1+1).
Thus, A§”) < e < )\Ef) are coming from the

solutions of fn()\s,? )) = 1, and looking at the graph
of y = fn(x) — 1 (see Fig. 1 for n = 7) we see that

ar—1 <A<y —1< A< an —1 <A,

To see the behavior as n — oo, fix an m > 1
and take n > m. Then
1

AW (am — 1)
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n m—1
:1 —
+k m+1ak—1—)\(n ;)\( (ai—l)
N+§:*—Za,_

k=m+1 i=1

So we see that

0<A™ —(a, —1)
m—1

-1
N | 1
1 — .
( + Z ag Ny Ay, — ai)
k=m-+1 1=1

o=l =

Hence, letting n — oo and using Y, a, ' = oo, we
have
lim (/\g,’;) — (am — 1)) =0.
[]
Proof of Theorem 3. This follows from
Lemma 2, since
o1 1
1
A(Z/mZ,....2/p2)=| P
: 1
1 .. 1 pn
and > 7, p,;} = oo by Euler (1737). []

Remark 3. Rough estimation in Lemma 2
shows that

(am —1)
. 1
=1+ - -
( k:zm:Jrl ar — 1= A

-1
"1
(Ea)

=m-+1

Hence if a,, = p,, then

)\S;r;) _

m—1

-1
Z :
i=1 AS@%) —a;+1

N 1
M= =D~ o
since Y p_; pp " ~ loglogn.
Numerical data :
A0 = 199262 - A0 = 197739
A0 — 1 95467 - A0 — 1 24788
A§4°°> = 1.24216 - - - A0 93794
ALL600) - — 1 93994 ...

Theorem 3 can be generalized as follows.
Theorem 3*. Let 1 < ki < ko < k3 < --- be
coprime integers. Then

SpectA (Z/k1Z, ..., Z/knZ) = (A, ... AW}
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are all simple and located as
ki —1< AWk 1< MVe <k, — 1< A,

Moreover, for each fixed m > 1, lim, ,\5,’3)

and
=1
if — =
25,

if Zki<+oo.

exists

(a) lim A =k, —1

n—oo

(b) lim A >k, —1

n—oo
Proof. The case (a) is treated by the same
method as Theorem 3 using Lemma 2. To see the
case (b), we modify Lemma 2 under the condition
> La,' < oo, where the result is the strict in-
equalities
am — 1 < lim /\Q;) < Gmy1 — 1.
n—oo
The convergence comes from /\§,’$ +1) < )\7(7? ) for n >
m : notice that

1
Farr(AG) =1+ <l
)\1(77;) - (a7L+1 - 1)
0
Example for Theorem 3* :
p% 1 1 - 1
1 p% 1 ... 1
AZ/Z,.... Z/ppZ) = [ 1 1 pj :
RS 1
11 - 1 P2
Then the minimum eigenvalues are
AL = 3751057 A9 = 3748405
AL 3747955 AR — 372
AU _ 3747139 ABO0) — 3 747126 - - -

A0 — 3 747121 -+
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