Homotopy groups of compact exceptional Lie groups

By Hideyuki KACHI^{*)} and Mamoru MIMURA^{**)}

(Communicated by Heisuke HIRONAKA, M. J. A., April 12, 1999)

We consider homotopy groups of compact, connected, simply connected simple exceptional Lie groups G; they are classified as G_2 , F_4 , E_6 , E_7 and E_8 . By the Hopf theorem we have

$$H^*(G;Q) \cong \Lambda(x_1, x_2, \cdots, x_\ell),$$

where ℓ is the rank of G, deg x_i is odd and $\sum_{i=1}^{\ell} \deg x_i$ is the dimension of G. Let Xbe the direct product of spheres of dimensions deg $x_1, \dots, \deg x_{\ell}$, then, from Serre's C-theory [10], $\pi_i(G)$ are C-isomorphic to $\pi_i(X)$ for all i, where Cis the class of finite abelian groups. Therefore the rank of $\pi_q(G)$ is equal to the number of such i that deg x_i is equal to q, particularly if q is even, then $\pi_q(G)$ is finite. It is a classical fact that $\pi_2(G) = 0$ and $\pi_3(G) \cong Z$.

According to Bott-Samelson [1], we have

$$\begin{aligned} \pi_i(E_6) &= 0 \text{ for } 4 \le i \le 8, & \pi_9(E_6) \cong Z, \\ \pi_i(E_7) &= 0 \text{ for } 4 \le i \le 10, & \pi_{11}(E_7) \cong Z, \\ \pi_i(E_8) &= 0 \text{ for } 4 \le i \le 14, & \pi_{15}(E_8) \cong Z. \end{aligned}$$

For $i \leq 23$, the homotopy groups $\pi_i(G_2)$ and $\pi_i(F_4)$ are determined in [7] by the second author. For $G = E_6$, E_7 and E_8 , the 2-primary components of homotopy group $\pi_i(G)$ are determined in [5] by the first author for $i \leq 22$, $i \leq 25$ and $i \leq 28$ respectively.

The purpose of this paper is to calculate $\pi_i(G : 3)$ the 3-primary components of homotopy groups $\pi_i(G)$ by making use of usual methods, such as the killing-homotopy method [2] and homotopy exact sequences associated with various fibrations.

Let $B_1(2n-1,2n+3)$ be a S^{2n-1} -bundle over S^{2n+3} with the characteristic element $\alpha_1(2n-1) \in \pi_{2n+2}(S^{2n-1}:3)$ so that $H^*(B_1(2n-1,2n+3);Z_3) \cong \Lambda(x_{2n-1},x_{2n+3})$, where $x_{2n+3} = \wp^1 x_{2n-1}$. Let $B_2(2n-1,2n+7)$ be a S^{2n-1} -bundle over S^{2n+7} with the characteristic element $\alpha_2(2n-1) \in \pi_{2n+6}(S^{2n-1}:3)$ so that $H^*(B_2(2n-1,2n+7);Z_3) \cong \Lambda(x_{2n-1},x_{2n+7})$, where $x_{2n+7} = \Phi x_{2n-1}; \Phi$ is the secondary cohomology operation associated with the relation $\wp^1\beta\wp^1 - \beta\wp^2 - \wp^2\beta = 0.$

Homotopy group of G_2 . It is known [7] that G_2 is 3-equivalent to $B_2(3,11)$, and so $\pi_i(G_2)$ are C_3 -isomorphic to $\pi_i(B_2(3,11))$, where C_3 is the class of finite abelian groups without 3 torsion. Thus $\pi_i(G_2:3)$ can be calculated from the homotopy exact sequence

$$\cdots \to \pi_{i+1}(S^{11}) \to \pi_i(S^3) \to \pi_i(B_2(3,11))$$
$$\to \pi_i(S^{11}) \to \pi_{i-1}(S^3) \to \cdots$$

associated with the bundle $B_2(3,11)/S^3 = S^{11}$.

Homotopy group of F_4 . Let K be a finite complex constructed by Harper in [3] such that

$$H^*(K; Z_3) \cong Z_3[x_8]/(x_8^3) \otimes \Lambda(x_3, x_7),$$

where $x_7 = \wp^1 x_3$ and $x_8 = \beta x_7$. Then, according to Harper [3], F_4 is 3-equivalent to $K \times B_1(11, 15)$.

We consider the 3-connective fiber space \tilde{F}_4 over F_4 by killing $\pi_3(F_4)$ so that $\pi_i(\tilde{F}_4) \cong \pi_i(F_4)$ for $i \ge 4$. Then we have that \tilde{F}_4 is 3-equivalent to $\tilde{K} \times B_1(11, 15)$, where \tilde{K} is the 3-connective fiber space over K and $H^*(\tilde{K}; Z_3) \cong Z_3[y_{18}] \otimes \Lambda(y_{19}, y_{23})$, where $y_{19} = \beta y_{18}$ and $y_{23} = \wp^1 \beta y_{18}$. Now we approximate \tilde{K} by a finite cell complex $K' = S^{18} \cup_{3\iota_{18}} e^{19} \cup e^{23}$ such that $\pi_i(\tilde{K})$ is \mathcal{C}_3 -isomorphic to $\pi_i(K')$ for $i \le 34$.

Then we have the homotopy exact sequence

for $i \leq 34$, where $f : S^{22} \to S^{18} \cup_{3\iota_{18}} e^{19}$ is the attaching map for e^{23} . Thus we can obtain $\pi_i(F_4 : 3)$ for $i \leq 34$. (Recall that $\pi_i(B_1(11, 15))$ is calculated in [9]).

Homotopy group of E_6 . According to Harris [4], E_6 is 3 equivalent to $F_4 \times B_2(9, 17)$. Thus $\pi_i(E_6:3)$ can be read off from those of F_4 and $B_2(9, 17)$, which is calculated from the homotopy exact sequence associated with the bundle $B_2(9, 17)/S^9 = S^{17}$.

Homotopy group of E_8 . The 3-connective fiber space \tilde{E}_8 over E_8 has the following mod 3 co-

^{*)} Department of Mathematical Sciences, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390–8621.

^{**)} Department of Mathematics, Okayama University, 3-1-1 Tsushima-Naka, Okayama 700–8530.

homology [6]:

$$H^*(\tilde{E}_8; Z_3)$$

$$\cong Z_3[x_{54}] \otimes \Lambda(x_{15}, x_{23}, x_{27}, x_{35}, x_{39}, x_{47}, x_{55}, x_{59})$$

where $\Phi x_{15} = x_{23}$, $\wp^1 x_{23} = x_{27}$ and $\Phi x_{27} = \pm x_{35}$. Then there exists a cell complex $K_8 = S^{15} \cup_{\alpha_2} e^{23} \cup$ $e^{27} \cup e^{35}$ such that $\pi_i(K_8)$ is \mathcal{C}_3 -isomorphic to $\pi_i(E_8)$ for $i \leq 36$, where $\alpha_2 = \alpha_2(15)$. Let $f: S^{26} \to K_{\alpha_2} =$ $S^{15} \cup_{\alpha_2} e^{23}$ and $g: S^{34} \to K_{\alpha_2} \cup e^{27}$ be the attaching maps for e^{27} and e^{35} respectively. Then $p \circ f =$ $\alpha_1(23)$ and $p' \circ g = \alpha_2(27)$, where $p : K_{\alpha_2} \to S^{23}$ and $p' : K_{\alpha_2} \cup e^{27} \to S^{27}$ are the maps which shrink S^{15} and K_{α_2} respectively to a point. The 3-primary component of $\pi_i(K_8)$ for $i \leq 36$ are calculated by means of the following three exact sequences;

$$\cdots \to \pi_i(S^{22}) \xrightarrow{\alpha_{2*}} \pi_i(S^{15}) \to \pi_i(K_{\alpha_2}) \to \pi_{i-1}(S^{22}) \xrightarrow{\alpha_{2*}} \pi_{i-1}(S^{15}) \to \cdots , \cdots \to \pi_i(S^{26}) \xrightarrow{f_*} \pi_i(K_{\alpha_2}) \to \pi_i(K_{\alpha_2} \cup e^{27}) \to \pi_{i-1}(S^{26}) \xrightarrow{f_*} \pi_{i-1}(K_{\alpha_2}) \to \cdots , \cdots \to \pi_i(S^{34}) \xrightarrow{g_*} \pi_i(K_{\alpha_2} \cup e^{27}) \to \pi_i(K_8) \to \pi_{i-1}(S^{34}) \xrightarrow{g_*} \pi_{i-1}(K_{\alpha_2} \cup e^{27}) \to \cdots .$$

Homotopy group of E_7 . We obtain that $H^*(E_7/F_4;Z_3) \cong \Lambda(z_{19},z_{27},z_{35})$ where $\Phi z_{19} = z_{27}$ and $\Phi z_{27} = z_{35}$. Then there exists a cell complex $K_{E_7/F_4} = S^{19} \cup_{\alpha_2} e^{27} \cup e^{35}$ such that $\pi_i(K_{E_7/F_4})$ are \mathcal{C}_3 -isomorphic to $\pi_i(E_7/F_4)$ for $i \leq 44$. This enables us to calculate the 3-primary components of $\pi_i(E_7/F_4)$ for $i \le 44$.

On the other hand we obtain that $H^*(\Omega(E_8/E_7))$ $(Z_3) \cong \Lambda(w_{11}, w_{19})$ for deg ≤ 37 . Then there exists a cell complex $K_{7,8} = S^{11} \cup e^{19} \cup e^{30}$ such that $\pi_i(K_{7,8})$ are C_3 -isomorphic to $\pi_i(E_8/E_7)$ for $i \leq 36$.

By making use of the homotopy exact sequences associated with the fibrations $F_4 \rightarrow E_7 \rightarrow E_7/F_4$ and $\Omega(E_8/E_7) \to E_7 \to E_8$, we can calculate the 3-primary component of $\pi_i(E_7)$.

Theorem 1. The 3-primary component of $\pi_i(G)$ are summarized in the following Table.

Table														
i	3	4	5	6	7	8	9	10	11	12	13	14	15	16
$\overline{\pi_i(G_2:3)}$	∞	0	0	3	0	0	3	0	∞	0	0	3	0	3
$\pi_i(F_4:3)$	∞	0	0	0	0	0	0	0	∞	0	0	0	∞	0
$\pi_i(E_6:3)$	∞	0	0	0	0	0	∞	0	0	3	0	0	0	0
$\pi_i(E_7:3)$	∞	0	0	0	0	0	0	0	∞	0	0	0	∞	0
$\pi_i(E_8:3)$	∞	0	0	0	0	0	0	0	0	0	0	0	∞	0

$\pi_i(G_2:3)$	0	3
$\pi_i(F_4:3)$	0	9 + 3

1718

π	$F_i(F_4:3)$	0	9 + 3	0	0	$(3)^2$	27	∞	0	0	
π	$F_i(E_6:3)$	∞	9 + 3	3	27	3 + 3	27 + 3	∞	9	0	
π	$F_i(E_7:3)$	0	3	∞	0	3	27	∞	0	0	
π	$F_i(E_8:3)$	0	3	0	0	0	0	∞	0	3	
	i	26		27		28	29		30		
	= (C · 2	$(2)^2$		2		0	0 2		2		

2021

19

3 0 0 22

9

232425

0 3 0

$\pi_i(G_2:3)$	$(3)^2$	3	0	3	3	
$\pi_i(F_4:3)$	27+3	0	$(3)^2$	3	3+9	
$\pi_i(E_6:3)$	27+3	3+3 27	$(+(3)^2)$	$(3)^2$	9+(3)	2
$\overline{\pi_i(E_7:3)}$	9 or 3	∞	3	0	27 + 9)
$\pi_i(E_8:3)$	0	∞	3	0	27	
i	31	32	33	34	35	36
$\overline{\pi_i(G_2:3)}$	0	0	3	9 + 3	3	3
$\pi_i(F_4:3)$	$(3)^2$	3	$(3)^2$	27 + 3		
$\overline{\pi_i(E_6:3)}$	$9+(3)^2$	27 + (3)	2 3	27 + 3		
$\pi_i(E_7:3)$	2	0	$\langle \mathbf{a} \rangle^2$			
	3	3	$(3)^{2}$			

In the above table an integer n indicates a cyclic group Z_n of order n, the symbol ∞ an infinite cyclic group Z, the symbol + the direct sum of the group, and $(3)^k$ indicates the direct sum of k-copies of Z_3 . Some of our results were announced in [13].

References

- [1] R. Bott and H. Samelson: Application of the theory of Morse to symmetric spaces. Amer. J. Math., 80, 964–1029 (1958).
- H. Cartan and J. P. Serre: Espaces fibres et [2]groupes d'homotopie. I, C. R. Acad. Sci. Paris, **234**, 288–290 (1952).
- [3] J. R. Harper: The mod 3 homotopy type of F_4 . Lecture Note in Math., 418, Springer, Berlin, 58-67(1974).
- [4] B. Harris: Suspensions and characteristic maps for symmetric spaces. Ann. of Math., 76, 295-305 (1962).
- [5] H. Kachi: Homotopy groups of compact Lie groups E_6, E_7 and E_8 . Nagoya Math. J., **32**, 109–139 (1968).
- [6] A. Kono and M. Mimura: Cohomology operations and the Hopf algebra structures of the compact exceptional Lie groups E_7 and E_8 . Proc. of London Math. Soc., 35, 345–358 (1977).
- [7] M. Mimura: The homotopy groups of Lie groups of low rank. J. Math. Kyoto Univ., 6, 131-176 (1967).
- [8] M. Mimura and H. Toda: Cohomology operations and the homotopy of compact Lie groups-I.

Topology, 9, 317–336 (1970).

- [9] S. Oka: On the homotopy groups of sphere bundles over sphere. J. Sci. Hiroshima Univ., A-1, 33, 161–195 (1969).
- [10] J. P. Serre: Groupes d'homotopie et classes de groupes abélian. Ann. of Math., 58, 258–294 (1957).
- [11] H. Toda: *p*-primary components of homotopy

groups-IV. Mem. Coll. Sci. Kyoto. Univ., **32**, 297–332 (1959).

- [12] H. Toda: On iterated suspension I. J. Math. Kyoto Univ., 5, 87–142 (1965).
- [13] H. Toda, M. Mimura, H. Imanisi, and H. Kachi: Homotopy groups of Lie groups. RIMS Kokyuroku, 21, RIMS Kyoto Univ. (1967) (in Japanese).