Homotopy groups of compact exceptional Lie groups

By Hideyuki $\mathrm{Kachi}^{*)}$ and Mamoru Mimura**)
(Communicated by Heisuke Hironaka, m. J. A., April 12, 1999)

We consider homotopy groups of compact, connected, simply connected simple exceptional Lie groups G; they are classified as $G_{2}, F_{4}, E_{6}, E_{7}$ and E_{8}. By the Hopf theorem we have

$$
H^{*}(G ; Q) \cong \Lambda\left(x_{1}, x_{2}, \cdots, x_{\ell}\right)
$$

where ℓ is the rank of $G, \operatorname{deg} x_{i}$ is odd and $\sum_{i=1}^{\ell} \operatorname{deg} x_{i}$ is the dimension of G. Let X be the direct product of spheres of dimensions $\operatorname{deg} x_{1}, \cdots, \operatorname{deg} x_{\ell}$, then, from Serre's \mathcal{C}-theory [10], $\pi_{i}(G)$ are \mathcal{C}-isomorphic to $\pi_{i}(X)$ for all i, where \mathcal{C} is the class of finite abelian groups. Therefore the rank of $\pi_{q}(G)$ is equal to the number of such i that $\operatorname{deg} x_{i}$ is equal to q, particularly if q is even, then $\pi_{q}(G)$ is finite. It is a classical fact that $\pi_{2}(G)=0$ and $\pi_{3}(G) \cong Z$.

According to Bott-Samelson [1], we have

$$
\begin{aligned}
& \pi_{i}\left(E_{6}\right)=0 \text { for } 4 \leq i \leq 8, \quad \pi_{9}\left(E_{6}\right) \cong Z \\
& \pi_{i}\left(E_{7}\right)=0 \text { for } 4 \leq i \leq 10, \quad \pi_{11}\left(E_{7}\right) \cong Z \\
& \pi_{i}\left(E_{8}\right)=0 \text { for } 4 \leq i \leq 14, \quad \pi_{15}\left(E_{8}\right) \cong Z
\end{aligned}
$$

For $i \leq 23$, the homotopy groups $\pi_{i}\left(G_{2}\right)$ and $\pi_{i}\left(F_{4}\right)$ are determined in [7] by the second author. For $G=E_{6}, E_{7}$ and E_{8}, the 2-primary components of homotopy group $\pi_{i}(G)$ are determined in [5] by the first author for $i \leq 22, i \leq 25$ and $i \leq 28$ respectively.

The purpose of this paper is to calculate $\pi_{i}(G$: 3) the 3-primary components of homotopy groups $\pi_{i}(G)$ by making use of usual methods, such as the killing-homotopy method [2] and homotopy exact sequences associated with various fibrations.

Let $B_{1}(2 n-1,2 n+3)$ be a $S^{2 n-1}$-bundle over $S^{2 n+3}$ with the characteristic element $\alpha_{1}(2 n-$ 1) $\in \pi_{2 n+2}\left(S^{2 n-1}: 3\right)$ so that $H^{*}\left(B_{1}(2 n-1,2 n+\right.$ $\left.3) ; Z_{3}\right) \cong \Lambda\left(x_{2 n-1}, x_{2 n+3}\right)$, where $x_{2 n+3}=\wp^{1} x_{2 n-1}$. Let $B_{2}(2 n-1,2 n+7)$ be a $S^{2 n-1}$-bundle over $S^{2 n+7}$ with the characteristic element $\alpha_{2}(2 n-1) \in$ $\pi_{2 n+6}\left(S^{2 n-1}: 3\right)$ so that $H^{*}\left(B_{2}(2 n-1,2 n+7) ; Z_{3}\right) \cong$ $\Lambda\left(x_{2 n-1}, x_{2 n+7}\right)$, where $x_{2 n+7}=\Phi x_{2 n-1} ; \Phi$ is the

[^0]secondary cohomology operation associated with the relation $\wp^{1} \beta \wp^{1}-\beta \wp^{2}-\wp^{2} \beta=0$.

Homotopy group of $\boldsymbol{G}_{\mathbf{2}}$. It is known [7] that G_{2} is 3 -equivalent to $B_{2}(3,11)$, and so $\pi_{i}\left(G_{2}\right)$ are \mathcal{C}_{3}-isomorphic to $\pi_{i}\left(B_{2}(3,11)\right)$, where \mathcal{C}_{3} is the class of finite abelian groups without 3 torsion. Thus $\pi_{i}\left(G_{2}: 3\right)$ can be calculated from the homotopy exact sequence

$$
\begin{aligned}
\cdots & \rightarrow \pi_{i+1}\left(S^{11}\right) \rightarrow \pi_{i}\left(S^{3}\right) \rightarrow \pi_{i}\left(B_{2}(3,11)\right) \\
& \rightarrow \pi_{i}\left(S^{11}\right) \rightarrow \pi_{i-1}\left(S^{3}\right) \rightarrow \cdots
\end{aligned}
$$

associated with the bundle $B_{2}(3,11) / S^{3}=S^{11}$.
Homotopy group of $\boldsymbol{F}_{\mathbf{4}}$. Let K be a finite complex constructed by Harper in [3] such that

$$
H^{*}\left(K ; Z_{3}\right) \cong Z_{3}\left[x_{8}\right] /\left(x_{8}^{3}\right) \otimes \Lambda\left(x_{3}, x_{7}\right)
$$

where $x_{7}=\wp^{1} x_{3}$ and $x_{8}=\beta x_{7}$. Then, according to Harper [3], F_{4} is 3 -equivalent to $K \times B_{1}(11,15)$.

We consider the 3 -connective fiber space \tilde{F}_{4} over F_{4} by killing $\pi_{3}\left(F_{4}\right)$ so that $\pi_{i}\left(\tilde{F}_{4}\right) \cong \pi_{i}\left(F_{4}\right)$ for $i \geq$ 4. Then we have that \tilde{F}_{4} is 3 -equivalent to $\tilde{K} \times$ $B_{1}(11,15)$, where \tilde{K} is the 3 -connective fiber space over K and $H^{*}\left(\tilde{K} ; Z_{3}\right) \cong Z_{3}\left[y_{18}\right] \otimes \Lambda\left(y_{19}, y_{23}\right)$, where $y_{19}=\beta y_{18}$ and $y_{23}=\wp^{1} \beta y_{18}$. Now we approximate \tilde{K} by a finite cell complex $K^{\prime}=S^{18} \cup_{3 \iota_{18}} e^{19} \cup e^{23}$ such that $\pi_{i}(\tilde{K})$ is \mathcal{C}_{3}-isomorphic to $\pi_{i}\left(K^{\prime}\right)$ for $i \leq 34$.

Then we have the homotopy exact sequence

$$
\begin{aligned}
\cdots & \rightarrow \pi_{i}\left(S^{22}\right) \xrightarrow{f_{*}} \pi_{i}\left(S^{18} \cup_{3 l_{18}} e^{19}\right) \rightarrow \pi_{i}\left(K^{\prime}\right) \\
& \rightarrow \pi_{i-1}\left(S^{22}\right) \xrightarrow{f_{⿱}} \pi_{i-1}\left(S^{18} \cup_{3 l_{18}} e^{19}\right) \rightarrow \cdots
\end{aligned}
$$

for $i \leq 34$, where $f: S^{22} \rightarrow S^{18} \cup_{3 \iota_{18}} e^{19}$ is the attaching map for e^{23}. Thus we can obtain $\pi_{i}\left(F_{4}\right.$: 3) for $i \leq 34$. (Recall that $\pi_{i}\left(B_{1}(11,15)\right.$ is calculated in [9]).

Homotopy group of $\boldsymbol{E}_{\mathbf{6}}$. According to Harris [4], E_{6} is 3 equivalent to $F_{4} \times B_{2}(9,17)$. Thus $\pi_{i}\left(E_{6}: 3\right)$ can be read off from those of F_{4} and $B_{2}(9,17)$, which is calculated from the homotopy exact sequence associated with the bundle $B_{2}(9,17) / S^{9}=S^{17}$.

Homotopy group of $\boldsymbol{E}_{\mathbf{8}}$. The 3-connective fiber space \tilde{E}_{8} over E_{8} has the following $\bmod 3$ co-
homology [6]:

$$
\begin{aligned}
& H^{*}\left(\tilde{E}_{8} ; Z_{3}\right) \\
& \cong Z_{3}\left[x_{54}\right] \otimes \Lambda\left(x_{15}, x_{23}, x_{27}, x_{35}, x_{39}, x_{47}, x_{55}, x_{59}\right)
\end{aligned}
$$

where $\Phi x_{15}=x_{23}, \wp^{1} x_{23}=x_{27}$ and $\Phi x_{27}= \pm x_{35}$. Then there exists a cell complex $K_{8}=S^{15} \cup_{\alpha_{2}} e^{23} \cup$ $e^{27} \cup e^{35}$ such that $\pi_{i}\left(K_{8}\right)$ is \mathcal{C}_{3}-isomorphic to $\pi_{i}\left(\tilde{E}_{8}\right)$ for $i \leq 36$, where $\alpha_{2}=\alpha_{2}(15)$. Let $f: S^{26} \rightarrow K_{\alpha_{2}}=$ $S^{15} \cup_{\alpha_{2}} e^{23}$ and $g: S^{34} \rightarrow K_{\alpha_{2}} \cup e^{27}$ be the attaching maps for e^{27} and e^{35} respectively. Then $p \circ f=$ $\alpha_{1}(23)$ and $p^{\prime} \circ g=\alpha_{2}(27)$, where $p: K_{\alpha_{2}} \rightarrow S^{23}$ and $p^{\prime}: K_{\alpha_{2}} \cup e^{27} \rightarrow S^{27}$ are the maps which shrink S^{15} and $K_{\alpha_{2}}$ respectively to a point. The 3 -primary component of $\pi_{i}\left(K_{8}\right)$ for $i \leq 36$ are calculated by means of the following three exact sequences;

$$
\begin{aligned}
& \cdots \rightarrow \pi_{i}\left(S^{22}\right) \xrightarrow{\alpha_{2} *} \pi_{i}\left(S^{15}\right) \rightarrow \pi_{i}\left(K_{\alpha_{2}}\right) \\
& \rightarrow \pi_{i-1}\left(S^{22}\right) \xrightarrow{\alpha_{2} *} \pi_{i-1}\left(S^{15}\right) \rightarrow \cdots, \\
& \cdots \rightarrow \pi_{i}\left(S^{26}\right) \xrightarrow{\rightarrow} \pi_{i}\left(K_{\alpha_{2}}\right) \rightarrow \pi_{i}\left(K_{\alpha_{2}} \cup e^{27}\right) \\
& \rightarrow \pi_{i-1}\left(S^{26}\right) \xrightarrow{f_{*}} \pi_{i-1}\left(K_{\alpha_{2}}\right) \rightarrow \cdots, \\
& \cdots \rightarrow \pi_{i}\left(S^{34}\right) \xrightarrow{g_{*}} \pi_{i}\left(K_{\alpha_{2}} \cup e^{27}\right) \rightarrow \pi_{i}\left(K_{8}\right) \\
& \rightarrow \pi_{i-1}\left(S^{34}\right) \xrightarrow{g_{*}} \pi_{i-1}\left(K_{\alpha_{2}} \cup e^{27}\right)
\end{aligned}
$$

Homotopy group of $\boldsymbol{E}_{\mathbf{7}}$. We obtain that $H^{*}\left(E_{7} / F_{4} ; Z_{3}\right) \cong \Lambda\left(z_{19}, z_{27}, z_{35}\right)$ where $\Phi z_{19}=z_{27}$ and $\Phi z_{27}=z_{35}$. Then there exists a cell complex $K_{E_{7} / F_{4}}=S^{19} \cup_{\alpha_{2}} e^{27} \cup e^{35}$ such that $\pi_{i}\left(K_{E_{7} / F_{4}}\right)$ are \mathcal{C}_{3}-isomorphic to $\pi_{i}\left(E_{7} / F_{4}\right)$ for $i \leq 44$. This enables us to calculate the 3-primary components of $\pi_{i}\left(E_{7} / F_{4}\right)$ for $i \leq 44$.

On the other hand we obtain that $H^{*}\left(\Omega\left(E_{8} / E_{7}\right)\right.$ $\left.; Z_{3}\right) \cong \Lambda\left(w_{11}, w_{19}\right)$ for $\operatorname{deg} \leq 37$. Then there exists a cell complex $K_{7,8}=S^{11} \cup e^{19} \cup e^{30}$ such that $\pi_{i}\left(K_{7,8}\right)$ are \mathcal{C}_{3}-isomorphic to $\pi_{i}\left(E_{8} / E_{7}\right)$ for $i \leq 36$.

By making use of the homotopy exact sequences associated with the fibrations $F_{4} \rightarrow E_{7} \rightarrow E_{7} / F_{4}$ and $\Omega\left(E_{8} / E_{7}\right) \rightarrow E_{7} \rightarrow E_{8}$, we can calculate the 3-primary component of $\pi_{i}\left(E_{7}\right)$.

Theorem 1. The 3-primary component of $\pi_{i}(G)$ are summarized in the following Table.

Table

| i | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\pi_{i}\left(G_{2}: 3\right)$ | ∞ | 0 | 0 | 3 | 0 | 0 | 3 | 0 | ∞ | 0 | 0 | 3 | 0 | 3 |
| $\pi_{i}\left(F_{4}: 3\right)$ | ∞ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ∞ | 0 | 0 | 0 | ∞ | 0 |
| $\pi_{i}\left(E_{6}: 3\right)$ | ∞ | 0 | 0 | 0 | 0 | 0 | ∞ | 0 | 0 | 3 | 0 | 0 | 0 | 0 |
| $\pi_{i}\left(E_{7}: 3\right)$ | ∞ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ∞ | 0 | 0 | 0 | ∞ | 0 |
| $\pi_{i}\left(E_{8}: 3\right)$ | ∞ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ∞ | 0 |

i	$17 \quad 18$	1920	21	22	2324	
$\overline{\pi_{i}\left(G_{2}: 3\right)}$	3	30	0	9	$0 \quad 3$	0
$\pi_{i}\left(F_{4}: 3\right)$	$09+3$	$0 \quad 0$	$(3)^{2}$	27	$\infty 0$	0
$\pi_{i}\left(E_{6}: 3\right)$	$\infty 9+3$	327	$73+3$	$27+3$	$\infty 9$	0
$\overline{\pi_{i}\left(E_{7}: 3\right)}$	03	$\infty 0$	3	27	$\infty 0$	0
$\pi_{i}\left(E_{8}: 3\right)$	03	$0 \quad 0$	0	0	$\infty 0$	3
i	26	27	28	29	30	
$\overline{\pi_{i}\left(G_{2}: 3\right)}$	(3) ${ }^{2}$	3	0	3	3	
$\pi_{i}\left(F_{4}: 3\right)$	$27+3$	0	$(3)^{2}$	3	$3+9$	
$\bar{\pi}_{i}\left(E_{6}: 3\right)$	27+3	$3+3$	$27+(3)^{2}$	${ }^{2}(3)^{2}$	$9+(3)$	
$\pi_{i}\left(E_{7}: 3\right)$	9 or 3	∞	3	0	$27+9$	
$\bar{\pi}_{i}\left(E_{8}: 3\right)$	0	∞	3	0	27	
i	31	32	33	34		36
$\overline{\pi_{i}\left(G_{2}: 3\right)}$	0	0	3	$9+3$	3	3
$\pi_{i}\left(F_{4}: 3\right)$	$(3)^{2}$	3	(3) ${ }^{2}$	${ }^{2} 27+3$		
$\overline{\pi_{i}\left(E_{6}: 3\right)}$	$9+(3)^{2}$	${ }^{2} 27+(3)$	$3)^{2} \quad 3$	$27+3$		
$\overline{\pi_{i}\left(E_{7}: 3\right)}$	3	3	$(3)^{2}$			
$\overline{\pi_{i}\left(E_{8}: 3\right)}$	0	0	3	0	$\infty+3$	

In the above table an integer n indicates a cyclic group Z_{n} of order n, the symbol ∞ an infinite cyclic group Z, the symbol + the direct sum of the group, and $(3)^{k}$ indicates the direct sum of k-copies of Z_{3}. Some of our results were announced in [13].

References

[1] R. Bott and H. Samelson: Application of the theory of Morse to symmetric spaces. Amer. J. Math., 80, 964-1029 (1958).
[2] H. Cartan and J. P. Serre: Espaces fibres et groupes d'homotopie. I, C. R. Acad. Sci. Paris, 234, 288-290 (1952).
[3] J. R. Harper: The mod 3 homotopy type of F_{4}. Lecture Note in Math., 418, Springer, Berlin, 5867 (1974).
[4] B. Harris: Suspensions and characteristic maps for symmetric spaces. Ann. of Math., 76, 295-305 (1962).
[5] H. Kachi: Homotopy groups of compact Lie groups E_{6}, E_{7} and E_{8}. Nagoya Math. J., 32, 109-139 (1968).
[6] A. Kono and M. Mimura: Cohomology operations and the Hopf algebra structures of the compact exceptional Lie groups E_{7} and E_{8}. Proc. of London Math. Soc., 35, 345-358 (1977).
[7] M. Mimura: The homotopy groups of Lie groups of low rank. J. Math. Kyoto Univ., 6, 131-176 (1967).
[8] M. Mimura and H. Toda: Cohomology operations and the homotopy of compact Lie groups-I.

Topology, 9, 317-336 (1970).
[9] S. Oka: On the homotopy groups of sphere bundles over sphere. J. Sci. Hiroshima Univ., A-1, 33, 161-195 (1969).
[10] J. P. Serre: Groupes d'homotopie et classes de groupes abélian. Ann. of Math., 58, 258-294 (1957).
[11] H. Toda: p-primary components of homotopy
groups-IV. Mem. Coll. Sci. Kyoto. Univ., 3 297-332 (1959).
[12] H. Toda: On iterated suspension I. J. Math. Kyoto Univ., 5, 87-142 (1965).
[13] H. Toda, M. Mimura, H. Imanisi, and H. Kachi: Homotopy groups of Lie groups. RIMS Kokyuroku, 21, RIMS Kyoto Univ. (1967) (in Japanese).

[^0]: *) Department of Mathematical Sciences, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621.
 **) Department of Mathematics, Okayama University, 3-11 Tsushima-Naka, Okayama 700-8530.

