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Milnor numbers and classes of local complete intersections

By Jean-Paul Brasselet,∗) Daniel Lehmann,∗∗) José Seade,∗∗∗) and Tatsuo Suwa∗∗∗∗)

(Communicated by Heisuke Hironaka, m.j.a., Dec. 13, 1999)

1. Introduction. Let V be an n-dimen-
sional compact complex subvariety of a complex
manifold M . When V is non-singular, the Chern
classes of the complex tangent bundle TV are well-
defined cohomology classes in H∗(V ; Z). We denote
by c∗(V ) their image by the Poincaré isomorphism

PV : H2(n−i)(V ; Z)
_[V ]−→ H2i(V ; Z),

cap-product by the fundamental class [V ] of V .
When V is singular there is no more Chern coho-
mology classes, but there are several theories gener-
alizing homology classes c∗(V ). For instance, the
Chern-Schwartz-MacPherson classes cSM

∗ (V ) ([16],
[17], [10], [3]) and the Fulton-Johnson classes cFJ

∗ (V )
[5] are two different theories which coincide with
c∗(V ) when V is non-singular. Our main purpose
is to compare the Chern-Schwartz-MacPherson and
the Fulton-Johnson classes when V is a local com-
plete intersection. In this paper, we give a presenta-
tion of the main results; the complete proofs will be
published elsewhere (see [4]).

On one hand, M. H. Schwartz defined actually
classes in H∗(M, M − V ; Z) ([16], 1965). Let us de-
note by m the complex dimension of M . It is proved
in [3](1979) that Schwartz classes are mapped by the
Alexander duality

H2(m−i)(M, M − V ; Z) −→ H2i(V ; Z)

onto the classes defined by MacPherson ([10], 1974).
We restrict ourselves to the case of a local com-

plete intersection V defined by a holomorphic sec-
tion of a vector bundle. We consider a holomorphic
vector bundle E → M of rank k = m − n, and a
holomorphic section s generically transverse to the
zero section, such that V is the zero set s−1(0). In
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this case, the virtual classes of V are defined in [4]
as the Chern classes c∗vir(V ) ∈ H∗(V ; Z) of the “vir-
tual tangent bundle” [TM − E]|V (in the complex
K-theory K̃(V )). The virtual classes c∗vir(V ) coin-
cide with the usual Chern classes if V is non-singular
and their images by the Poincaré duality (no more
an isomorphism), denoted by cvir

∗ (V ), coincide with
the Fulton-Johnson classes cFJ

∗ (V ).
In order to compare the Schwartz-MacPher-

son and the Fulton-Johnson classes of a local com-
plete intersection, we have to study the difference
cvir
∗ (V )− cSM

∗ (V ). This difference localizes near the
singular part Sing(V ) of V : more precisely, if we de-
note by (Sα)α the family of connected components of
Sing(V ), there are well defined elements µ∗(V, Sα) in
H∗(Sα; Z), called “the (homological) Milnor classes”
of V at Sα, such that we get the

Theorem A. We have,

cvir
∗ (V )− cSM

∗ (V ) = (−1)n
∑
α

(iα)∗
(
µ∗(V, Sα)

)
,

where (iα)∗ : H∗(Sα) → H∗(V ) denotes the natural
map arising from the inclusion Sα ⊂ V .

The Milnor number is well defined by Milnor
[11], for hypersurfaces with isolated singular points,
by Hamm [7] and Lê [8] for local complete inter-
sections still with isolated singular points, and by
Parusiński [12] for hypersurfaces with any compact
singular set. The following theorem justifies the ter-
minology “Milnor class” that we use.

Theorem B. µ0(V, Sα) is equal to the Milnor
number of V at Sα in H0(Sα) ∼= Z, in all situations
where this number has been already defined.

Such a theory for Milnor classes in homology has
also been suggested by Yokura [21], and given in the
case of complex compact hypersurfaces by Aluffi [1]
and Parusiński-Pragacz [14].

For r ≥ 1, we explain how to compute the Mil-
nor class µr−1(V, Sα) by means of an r-frame F (r)

defined on the regular part V0 of V near (but off)
Sα, as the difference (up to sign) of two classes of
F (r) at Sα, the so-called “Schwartz class” and the
“virtual class” (Theorems C and D).
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For r = 1, the virtual class is an integer, called
the virtual index of the vector field. We interpret
this index as the Euler-Poincaré invariant χ(V ′) =
cn(V ′) _ [V ′] of a “smoothing” V ′ of V (Theorem
E), hence the formula

cFJ
0 (V )− cSM

0 (V ) = χ(V ′)− χ(V ).

When Sα is non-singular, we give more explicit
formulas for the computation of µr−1(V, Sα) in two
cases : for k = 1 (hypersurfaces), or when Sα has
complex dimension r − 1 (Theorem F). Explicit ex-
amples appear in [4].

2. Local complete intersections and no-
tation. Let (V, M, E, s) be as above. Since we as-
sume the section s of E to be generically transverse
to the zero section, it is regular, and the components
of s with repect to a local trivialization of E generate
the ideal of (local) holomorphic functions vanishing
on V (by [20]). Thus, V is a local complete intersec-
tion in M . The restriction of E to the regular part
V0 of V may be canonically identified with the nor-
mal bundle of V0 in M . Thus E|V is an extension to
all of V of this normal bundle. We still call it normal
bundle to V as in the non-singular case. The bundle
E|V depends only on V and not on (E, s).

Let Σ be an analytic subset of V containing the
singular part Sing(V ). [In practice, it will be in the
sequel the union of Sing(V ) and of the singular part
of an r-frame on V0 = V − Sing(V )]. Denoting by
(Sα)α the set of connected components of Σ, we shall
make the following assumption: each Sα is either in-
cluded in V0 or is a connected component of Sing(V ),
but none of them intersects simultaneously V0 and
Sing(V ).

We will denote by {Vi} a Whitney stratification
of M compatible with V and Σ. By ÃLojasiewicz,
there is a smooth triangulation (K) of M adapted to
V and Σ, and to the given stratification (i.e. having
V , the closed stata and Σ as subcomplexes). Let us
denote by (K ′) a first barycentric subdivision of K,
and by (D) the cellular decomposition of M , dual to
(K), associated to (K ′). The i-dimensional skeleton
of (D) will be denoted by (D)(i).

For S being one of the Sα, we denote by T̃ the
union of the (D)-cells which intersect S (or equiva-
lently of (D)-cells dual of (K)-simplices in S), and
we set T = T̃ ∩ V . We denote by Ũ a neighborhood
of S in M containing T̃ , and we set U = Ũ ∩ V . We
shall assume furthermore that Ũ does not intersect

the similar neighborhood Ũα for other Sα’s.
3. Topological definition of Milnor clas-

ses.
3-1. Schwartz-MacPherson classes and

their localization. One of the original definitions
of Chern classes uses the obstruction theory: If V is
a complex manifold of dimension n, the Chern class
cp(V ) is the obstruction to the existence of a com-
plex r-frame tangent to V on the 2p-skeleton of a
suitable triangulation, where r = n− p + 1.

In the case of a stratified singular variety V con-
tained in an m-dimensional complex manifold M , let
us write q = m − r + 1. We recall that a stratified
r-frame on a subset A of M is an r-frame F (r) such
that for every x ∈ A, F (r)(x) is tangent to the stra-
tum containing x, in particular, the restriction F (r)

of this r-frame to V0 is tangent to V0. Among such
r-frames there are “radial” r-frames, denoted F

(r)
0 ,

whose main properties are the following:
(i) for a cell decomposition (D) as above, all vectors

of F
(r)
0 are pointing outwards the neighborhoods

T̃ ,
(ii) F

(r)
0 is defined on the (2q− 1)-dimensional cells

of (D) and have isolated singularities inside the
(2q)-cells,

(iii) the index of F
(r)
0 in a (2q)-cell σ ⊂ M is the

same as the index of its restriction to σ∩Vi ⊂ Vi.
The class cq

SM (V ) ∈ H2q(M, M − V ; Z) repre-
sents the obstruction to extend a radial r-frame F

(r)
0

to (D)(2q). It does not depend on the choice of F
(r)
0

as far as it is radial. We refer to [16] and [3] for more
precise definitions.

Let us extend the M. H. Schwartz construction
to the case where F (r) is a stratified r-frame, not
necessarily radial, and defined on V , not necessarily
in M .

Also, if F
(r)
1 and F

(r)
2 are two (non-singular)

r-frames tangent to V0, defined over the (D)(2q) ∩
(U − S), the difference cocycle d(F (r)

1 , F
(r)
2 ) is well

defined in H2p−1(∂T ) (see [18] §33.3): it is the first
obstruction for F

(r)
1 and F

(r)
2 to be homotopic over

∂T . We denote by dS(F (r)
1 , F

(r)
2 ) the image of the

class d(F (r)
1 , F

(r)
2 ) by the composition

H2p−1(∂T ) δ−→ H2p(T , ∂T )(∗)
τ−→ H2q(T̃ , ∂T̃ ) A−→ H2r−2(S)

of the connecting homomorphism δ, the Thom-Gysin
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homomorphism τ defined by 〈τ(c), σ〉 = 〈c, σ∩V 〉 for
a 2q-cell σ in (D), and the Alexander isomorphism
A (see [2]).

Definition. The “homological Schwartz class”
cSM
r−1(F (r), S) of F (r) at S is defined in H2r−2(S; Z)

by the formula

cSM
r−1(F (r), S) = cSM

r−1(S) + dS(F (r)
0 , F (r)).

In particular

cSM
r−1(F (r)

0 , S) = cSM
r−1(S),

for a radial r-frame F
(r)
0 .

Proposition 1. For two r-frames F
(r)
1 and

F
(r)
2 , we have:

cSM
r−1(F (r)

1 , S)− cSM
r−1(F (r)

2 , S) = dS(F (r)
1 , F

(r)
2 ).

Theorem C. Assume that F (r) exists without
singularity on

(
V −∪Sα⊂ΣSα

)∩(D)2p. Then we get:

cSM
r−1(V ) =

∑

Sα⊂V0

(iα)∗cSM
r−1(F (r), Sα)

+
∑

Sα⊂Sing(V )

(iα)∗cSM
r−1(F (r), Sα),

where iα : Sα ↪→ V denotes the natural inclusion
map.

In the situation where Sα is included in V0, we
call cSM

r−1(F (r), Sα) the Poincaré-Hopf class of F (r) at
Sα, this terminology being the classical one when r

is equal to 1.
3-2. Virtual Chern classes and their lo-

calization. We already defined virtual character-
istic classes of V as the Chern classes c∗vir(V ) ∈
H2∗(V,Z) of the virtual bundle [TM−E]|V ∈ K̃(V ),
so they coincide with the usual Chern classes of V

when V is non-singular.
Recall the exact sequence

0 → TV0 → TM |V0 → E|V0 → 0

over the regular part V0 of V . There exists a smooth
vector bundle E′ → V and an integer h ≥ 0, such
that E|V ⊕ E′ is the trivial bundle θh of rank h.
Then, TM |V ⊕E′ is an extension of TV0 ⊕ θh to all
of V . Every smooth r-frame F (r) tangent to V0 may
be naturally completed as a smooth (r + h)-frame
of TM |V0⊕E′|V0 (denoted by (F (r), w(h))). The vir-
tual class cp

vir(V ) may therefore be interpreted in the
usual obstruction theory as the first obstruction to
the existence of an (r + h)-frame of TM |V ⊕ E′.

Let F (r) be an r-frame tangent to V0, defined

in particular on the 2p-skeleton ∂T ∩ (D)2p of ∂T :
According to the usual obstruction theory, such
F (r) always exist, and the obstruction to extend
(F (r), w(h)) without singularity inside of T ∩(D)2p is
a cohomology class cp

vir(F (r), S) in H2p(T , ∂T ; Z) ∼=
H2p(V, V − S; Z). It does not depend on the choice
of E′. Let us denote by cvir

r−1(F (r), S) its image by
the composition A ◦ τ (cf (*)).

Proposition 2. For two r-frames F
(r)
1 and

F
(r)
2 , we have:

cvir
r−1(F (r)

1 , S)− cvir
r−1(F (r)

2 , S) = dS(F (r)
1 , F

(r)
2 ).

Theorem D. Assume that F (r) exists without
singularity on

(
V −∪Sα⊂ΣSα

)∩(D)2p. Then we get:

cvir
r−1(V ) =

∑

Sα⊂V0

(iα)∗cvir
r−1(F (r), Sα)

+
∑

Sα⊂Sing(V )

(iα)∗cvir
r−1(F (r), Sα),

where iα : Sα ↪→ V denotes the natural inclusion
map.

For r = 1 and S = {p} an isolated point,
cvir
0 (v, p) ∈ H0({p}; Z) ∼= Z is the index defined in

[6] if p is a singular point (see §4) and the classical
Poincaré-Hopf index if p is a regular point. This jus-
tifies the terminology of “Poincaré-Hopf class” when
S ⊂ V0, for every r.

3-3. Milnor classes.
Definition. Let F (r) be an r-frame, as in 3-1.

We define

µr−1(V, S) = (−1)n
[
cvir
r−1(F (r), S)− cSM

r−1(F (r), S)
]
,

which is in H2r−2(S; Z).
It follows from Propositions 1 and 2 that the

homology class µr−1(V, S) does not depend on the
choice of the stratified r-frame F (r). We shall call it
the “homological Milnor class” of V at S.

From Theorems C and D we deduce Theorem A
of the introduction. Such a result has been given for
local complete intersections with isolated singulari-
ties in [15] and [19].

Proposition.
(i) We have µr−1(V, S)=0 for r > dimC S +1.
(ii) If S is contained in V0, all the Milnor

classes µr−1(V, S) vanish.
4. The case r = 1. We already mentioned

(Theorem B of the introduction) that µ0(V, S) is the
classical Milnor number, any time that this number
has already been defined. It allows, by the way, to
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define such a Milnor number in more general situ-
ations, for example for local complete intersections
of any codimension, S being not necessarily a point.
The definition of the Milnor number was given

- for isolated singularities by [11], [7] and [8] in
terms of Milnor fiber,

- for hypersurfaces and compact S by [12] in
terms of Euler number of some vector bundle of rank
m over M .

Observe that none of the methods used in these
cases extend to our general situation.

Let us first give a geometric interpretation of
the virtual index defined above. We already know
([9], [15]) that if V has an isolated singularity at p

and v is a continuous vector field on V , singular only
at p, then cvir

0 (v, p) equals the GSV-index of v at p,
i.e., the Poincaré-Hopf index of an extension of v to
a Milnor fibre of V at p.

We have a similar interpretation of the vir-
tual index in the case where the variety V has
non-isolated singularities. By Thom’s transversal-
ity, there exists a C∞ section s′ of E on M which
coincides with s on the complement of ∪αŨα in M ,
it is transverse to the zero section of E, and it is
homotopic to s. We call the zero set V ′ of s′ a C∞

smoothing of V near Sing(V ). Denote by TRV ′ the
(real) tangent bundle of V ′; if we consider TM and
E as real bundles, we have the exact sequence,

0 → TRV ′ → TM |V ′ → E|V ′ → 0.

Although V ′ does not have a complex structure, the
bundles TM |V ′ and E|V ′ are complex vector bun-
dles. Using these, one can use V ′ to evaluate the
virtual index of the restriction v to V of a vector
field ṽ, defined on Ũα−Sα, non-singular on Uα−Sα,
tangent to both V and V ′, in terms of the Poincaré-
Hopf index of the restriction v′ of ṽ to V ′:

Theorem E.
(i) cvir

0 (v, Sα) is equal to the sum of the usual
Poincaré -Hopf index of v′ inside of V ′ ∩
Ũα, independently of (V ′, v′).

(ii) In particular, cvir
0 (V ) = χ(V ′)

5. Computations. Let S be a non-singular
component of complex dimension ` of the singular set
Sing(V ) . Let H be an m − ` complex dimensional
submanifold of M , transverse to S at a point x ∈ S.
Thus x is an isolated singular point of V ∩H in H,
and the Milnor number µ0(V ∩H,x) does not depend
on H as long as it is transverse to S.

Theorem F. In the above situation:
(i) if k = 1, we have

µr−1(V, S)

= (−1)`µ0(V ∩H, x)

· c`−r+1([TS − E|S ]) _ [S],

where c`−r+1([TS−E|S ]) denotes the `− r + 1st

Chern class of the virtual bundle [TS − E|S ].
(ii) if ` = r − 1 (k arbitrary),

µr−1(V, S) = (−1)`µ0(V ∩H,x) · [S].

When k = 1, a formula conjectured in [21] is
proved in [14], giving the “global” Milnor class of V

(with arbitrary singularities) as the sum of contri-
butions from each stratum of a stratification of V .
The contribution from a non-singular component of
Sing(V ) is given as in the formula above.
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Caractéristique d’Euler-Poincaré, Astérisque,
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