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On semicontinuous solutions for general Hamilton-Jacobi equations

By Yoshikazu Gia*)***) and Moto-Hiko SATO**)

(Communicated by Heisuke HIRONAKA, M. J. A., Nov. 12, 1999)

This is an announcement
of our recent work [16], where detailed proofs are
given as well as extensions. We do not give the proof
of statements. We consider the initial value problem
for the Hamilton-Jacobi equation of form

(1a) in (0,7) x R",
(1b) x € R,
where u; = Ou/0t and u, = (0 u,...,0; u),

Oz, u = Ou/dx;; oo > T > 0 is a fixed number.
Our main goal is to find a suitable notion of solution

1. Introduction.

ur + H(z,u;) =0

(0, x) = up(x),

when wg is discontinuous. The theory of viscosity so-
lutions initiated by Crandall and Lions [6] yields the
global solvability of the initial value problem by ex-
tending the notion of solutions when ug is continuous
(cf. [8, Chap.10], [15], [2]). In fact, if initial data ug
is bounded, uniformly continuous, it is well-known
[6], [15] that the initial value problem (1a)-(1b) ad-
mits a unique global (uniformly) continuous viscosity
solution when H is enough regular, for example H
satisfies the Lipschitz conditions

(2a)  |H(x,p) — H(z,q)| < Clp—1
(2b)  |H(x,p) — H(y,p)| < C(A+ p|)|x —yl.

We only refer to [2], [15] and [7] for the basic theory
of viscosity solutions. The notion of viscosity solu-
tion has been extended to semicontinuous functions.
This is very important to prove the existence of so-
lutions without appealing hard estimates. Such a
method is first introduced by [13]. However, if uy is,
for example, upper semicontinuous, a classical semi-
continuous viscosity solution may not be unique.
Recently to overcome this inconvenience, Bar-
ron and Jensen [3] introduced another notion of vis-
cosity solutions for semicontinuous functions when
the Hamiltonian H = H(z,p) is concave in p and
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proved the existence and the uniqueness of their so-
lution for (1a), (1b) for bounded (from above), upper
semicontinuous initial data ug. Their solution is now
called a bilateral viscosity solution [1]. For later de-
velopment of the theory as well as other approaches
we refer to [1] and references cited there. However,
their theory is limited for concave H. (In [3] H is
assumed to be convex but they consider the termi-
nal value problem which is easily transformed to the
initial value problem with concave Hamiltonian by
setting T — ¢ by ¢.)

In this paper we introduce a new notion of a so-
lution which is unique for a given initial upper semi-
continuous initial data. For (1a), (1b) we consider
auxiliary problem

(3a) Wy — by H(z,—5 /) =0 in (0,T) x R,
(3b) ¢(05I7y) :wo(xvy)a (xay) eR" xR.

The equation (3a) is called the level set equation for
the evolution of the graph of u of (1a). In fact, if
a level set of a solution ¢ of (3a) is given as the
graph of a function v = v(t,x), then v must solve
(la). For given upper semicontinuous initial data
up : R — R U {—00, +o0}, shortly ug € USC(R"),
we take

(4) wo(%y) = _min{diSt((x7y)>K0)7 1}’
where

(5) Ko ={(z,y) € R" x R; y <up(z)}.
We solve (3a), (3b) and set

(6)  u(t,z) =sup{y € R; ¢(t,z,y) >0},
where ¢ is the continuous viscosity solution of (3a),
(3b). We call w an L-solution of (1a), (1b). Such a
solution uniquely exists globally in time under suit-
able condition on H.

Theorem 1. Assume that the recession func-
tion

(7) Hool(z,p) = I)H%)\H(x,p/)\), reR™ peR"

exists and that H satisfies (2a), (2b). Then there
exists a global unique L-solution for an arbitrary
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One may relax the assumptions on H (cf. Re-
mark 11 and [16]) but in this paper we shall al-
ways assume (2a), (2b) and (7). These assump-
tions guarantee that the singularity at ¢, = 0 in
(3a) is removable if we restrict ¢ satisfying ¢, < 0.
Moreover, (3a), (3b) admits a unique global solution
for any bounded, uniformly continuous initial data
Yo = o(x,y) which is nonincreasing in y. (The
monotonicity of the solution ¢ in y is preserved for
t>0.)

2. Comparison and uniqueness. Since a
solution of (3a), (3b) enjoys a comparison principle,
so does an L-solution (la), (1b).

Theorem 2 (comparison). Let u and v be
the L-solution of (1a), (1b) with initial data ug and
v, respectively, where ug, vy € USC(R™). Ifug < vg
on R™, then u < v on (0,T) x R™.

In the definition of an L-solution the specific form of
1o given by (4) is not important.

Theorem 3 (uniqueness). Assume that g is
a bounded uniformly continuous function such that
{0 > 0} = Ky and that y — o(x,y) is nonincreas-
ing. Let ¢ be the solution of (3a), (3b). Then

a(t,x) = sup{y € R; (t,z,y) > 0},
te (0,7), z€R"

agrees with the L-solution of (1a), (1b).
The key observation for the proof is that the set
{1/1 2 0} (: {(taxay); w(t»%y) > 0} depends only
on K and is independent of the choice of 1y. This is
a typical uniqueness property of a level set equation.
It is based on invariance of solution under the change
of the dependent variable as stated below (which is
slightly more general than stated in references [9],
[10], [4], [11], [14] since # need not be continuous).
Lemma 4 (invariance). Assume that ¢ is a
subsolution (resp. supersolution) of (3a). Assume
that 0 is upper (resp. lower) semicontinuous and
nondecreasing. Assume that § £ —oo (resp. 8 %
+00). Then the composite function 6 o1 is also a
subsolution (resp. supersolution of (3a)).
If {¢p > 0} were a bounded set, a comparison prin-
ciple for (3a), (3b) and Lemma 4 would yield the
uniqueness of {¢) > 0} as in [10], [4], [11]. However,
since {¢ > 0} is unbounded, we actually argue as in
[14] to get the uniqueness of {¢) > 0}.
3. Consistency. We shall compare other
notion of solutions.
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Theorem 5. Let u be the L-solution of (la),
(1b) with uwg € USC(R™). Then u be a viscosity
solution of (1a) provided that @ does not take +oo.

Sketch of the proof. Let 1 be the solution of
(3a), (3b) with ¢ in (4). By Lemma 4 the function
I~ o) is a subsolution of (3a), where I~ (¢) = 0 for
o >0and I (0) = —oo for ¢ < 0. From this it is
easy to see that w is a viscosity subsolution.

To prove that w is a viscosity supersolution we
need to use the fact that y — (z,y) is nonincreas-
ing. This implies that the lower semicontinuous en-
velope (@), of w equals

u(t,z) = inf{y € R; (t,z,y) € {1 <0}}
te(0,T), x € R™

Since I o (¢) + 1/m) is a supersolution of (3a) by
Lemma 4, we see, by stability as m — oo, that

_ [oo for (t,z,y) € int{yp > 0},
b e,y) = {0 for (t,,) € (¥ < 0}

is a subsolution of (3a), where I (o) =0 for 0 <0
and I (o) = oo for ¢ > 0. Thus u is a supersolution.
1
Theorem 6. Assume that ug is bounded, uni-
formly continuous. Then the bounded, uniformly
continuous viscosity solution u of (la), (1b) is an
L-solution.
This follows from Theorem 3 by choosing

v=_(y—ult,r)) A\M)VM for M =suplul.

Theorem 7. Assume that p +— H(z,p) is
concave. Let U be the L-solution of (3a), (3b) with
ug € USC(R™) and supug < oo. Then w is a bilate-
ral viscosity solution with initial data ug.

For the proof we use the property that the bi-
lateral viscosity solution is given as a monotone limit
of continuous viscosity solution [3]. Thus the proof
is reduced to the next lemma.

Lemma 8. Assume that uge | up € USC(R")
with uge which is Lipschitz in R™. Assume that uo.
> upe +€—¢' fore>¢e' > 0. Let u. be the solution
of (1a), (1b) with ug = wpe. Then lim._ou. is an
L-solution of (1a), (1b) (so that it agrees with @).
The sequence ug. is easily constructed by setting
Upe = ug + € with sup-convolution ug of ug.

4. Right accessibility. It is not clear in
what sense the initial value is attained for L-solutions
(unless initial data is continuous.) Since the viscosity
solution of (3a), (3b) with ¢ in (4) is continuous up
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tot =0, the set {¢p > 0} is closed in [0,T) x R*" xR
so that

(8) uo(w) = T ).

Yy—x

However, in general it is not clear whether there is a
sequence t,, — 0, y,, — = such that

(9) ’U,()(Q?) = lim H(tmaym)'

m—00

We call this last property the right accessibility
as in [5]. Since W is upper semicontinuous in
[0,T) x R™, the property (9) is equivalent to ug(z) =
(@|(o,ryxrn)+ (0,2). We give a simple criterion for
right accessibility.

Lemma 9. Assume that F € C(RY) is posi-
tively homogeneous of degree one. Let A be a closed
convez set in RN. Let w be the L-solution of

wy +F(w,) =0, z€RY, t>0; wl—o=wp.

with wo(z) =0, z€ A and sup{wy(z);dist(z, A) >}
<0 ford >0. Then

0 z€ A+tW,
<0 otherwise.

wt,z) = {
Here

Wo={2€R"Y; sup(z-p—a(p) <0},

Ip|=1

The set W, is often called the Wulff shape with re-
spect to a if « is positive. The set W, may be empty.
For example if F(p) = |p|, then W, = 0. If we
consider (1a), (1b) with H(p) = |p| and ug(z) = 0,

x = 0; up(xz) = —o0, & # 0, then the L-solution
u(t,x) = —oo for all ¢ > 0. This is easy to prove
since v(t,x) = —mt — m|x| is a continuous solution

for all m > 0 and v < v by Theorem 2. For this
problem (9) for v is not fulfilled.

Theorem 10. If H is positively homogeneous
degree of one, and independent of x, then an L-
solution is right accessible for any ug € USC(R™)
if and only if Wy, # 0.

Remark 11. Our results up to §3 can be gen-
eralized for more general equation

ut + H(x,u,u;) =0,

when H fulfills
(i) He C(R" xR x R") and H, exists;
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(ii) There exists a modulus m; that satisfies

lgH (z,y — p/q) — q¢H(z',y', —p/q)]
<mi((Je —2'[ +ly — ¢’ (Ipl + la| + 1))

for all z,y, 2’y € R", pe R™, ¢ < 0;
(iii) For each C7 > 0 there exists a modulus mg such
that

l¢H (z,y —p/q) — ¢ H(z,y,—p"/q)|
<ma(lp—p'|+l¢—¢)

forallz € R", y € R, p,p) € R", q,¢ <0

satisfying |pl, [p'|, g/, |¢'| < Ch;
(iv) y — H(x,y,p) is nondecreasing.

A typical example of H satisfying these as-
sumptions is a(z)/b+ |p|® and a is Lipschitz and
0<B<1,b>0.
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