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On semicontinuous solutions for general Hamilton-Jacobi equations

By Yoshikazu Giga∗),∗∗∗) and Moto-Hiko Sato∗∗)

(Communicated by Heisuke Hironaka, m. j. a., Nov. 12, 1999)

1. Introduction. This is an announcement
of our recent work [16], where detailed proofs are
given as well as extensions. We do not give the proof
of statements. We consider the initial value problem
for the Hamilton-Jacobi equation of form

ut +H(x, ux) = 0 in (0, T )×Rn,(1a)

u(0, x) = u0(x), x ∈ Rn,(1b)

where ut = ∂u/∂t and ux = (∂x1u, . . . , ∂xnu),
∂xi

u = ∂u/∂xi; ∞ ≥ T > 0 is a fixed number.
Our main goal is to find a suitable notion of solution
when u0 is discontinuous. The theory of viscosity so-
lutions initiated by Crandall and Lions [6] yields the
global solvability of the initial value problem by ex-
tending the notion of solutions when u0 is continuous
(cf. [8, Chap.10], [15], [2]). In fact, if initial data u0

is bounded, uniformly continuous, it is well-known
[6], [15] that the initial value problem (1a)-(1b) ad-
mits a unique global (uniformly) continuous viscosity
solution when H is enough regular, for example H
satisfies the Lipschitz conditions

|H(x, p)−H(x, q)| ≤ C|p− q|(2a)

|H(x, p)−H(y, p)| ≤ C(1 + |p|)|x− y|.(2b)

We only refer to [2], [15] and [7] for the basic theory
of viscosity solutions. The notion of viscosity solu-
tion has been extended to semicontinuous functions.
This is very important to prove the existence of so-
lutions without appealing hard estimates. Such a
method is first introduced by [13]. However, if u0 is,
for example, upper semicontinuous, a classical semi-
continuous viscosity solution may not be unique.

Recently to overcome this inconvenience, Bar-
ron and Jensen [3] introduced another notion of vis-
cosity solutions for semicontinuous functions when
the Hamiltonian H = H(x, p) is concave in p and
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proved the existence and the uniqueness of their so-
lution for (1a), (1b) for bounded (from above), upper
semicontinuous initial data u0. Their solution is now
called a bilateral viscosity solution [1]. For later de-
velopment of the theory as well as other approaches
we refer to [1] and references cited there. However,
their theory is limited for concave H. (In [3] H is
assumed to be convex but they consider the termi-
nal value problem which is easily transformed to the
initial value problem with concave Hamiltonian by
setting T − t by t.)

In this paper we introduce a new notion of a so-
lution which is unique for a given initial upper semi-
continuous initial data. For (1a), (1b) we consider
auxiliary problem

ψt − ψyH(x,−ψx/ψy) = 0 in (0, T )×Rn+1,(3a)

ψ(0, x, y) = ψ0(x, y), (x, y) ∈ Rn ×R.(3b)

The equation (3a) is called the level set equation for
the evolution of the graph of u of (1a). In fact, if
a level set of a solution ψ of (3a) is given as the
graph of a function v = v(t, x), then v must solve
(1a). For given upper semicontinuous initial data
u0 : Rn → R ∪ {−∞,+∞}, shortly u0 ∈ USC (Rn),
we take

(4) ψ0(x, y) = −min{dist((x, y),K0), 1},

where

(5) K0 = {(x, y) ∈ Rn ×R; y ≤ u0(x)}.

We solve (3a), (3b) and set

(6) u(t, x) = sup{y ∈ R; ψ(t, x, y) ≥ 0},

where ψ is the continuous viscosity solution of (3a),
(3b). We call u an L-solution of (1a), (1b). Such a
solution uniquely exists globally in time under suit-
able condition on H.

Theorem 1. Assume that the recession func-
tion

(7) H∞(x, p) = lim
λ↓0

λH(x, p/λ), x ∈ Rn, p ∈ Rn

exists and that H satisfies (2a), (2b). Then there
exists a global unique L-solution for an arbitrary
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u0 ∈ USC (Rn).
One may relax the assumptions on H (cf. Re-

mark 11 and [16]) but in this paper we shall al-
ways assume (2a), (2b) and (7). These assump-
tions guarantee that the singularity at ψy = 0 in
(3a) is removable if we restrict ψ satisfying ψy ≤ 0.
Moreover, (3a), (3b) admits a unique global solution
for any bounded, uniformly continuous initial data
ψ0 = ψ0(x, y) which is nonincreasing in y. (The
monotonicity of the solution ψ in y is preserved for
t > 0.)

2. Comparison and uniqueness. Since a
solution of (3a), (3b) enjoys a comparison principle,
so does an L-solution (1a), (1b).

Theorem 2 (comparison). Let u and v be
the L-solution of (1a), (1b) with initial data u0 and
v0, respectively, where u0, v0 ∈ USC (Rn). If u0 ≤ v0
on Rn, then u ≤ v on (0, T )×Rn.
In the definition of an L-solution the specific form of
ψ0 given by (4) is not important.

Theorem 3 (uniqueness). Assume that ψ0 is
a bounded uniformly continuous function such that
{ψ0 ≥ 0} = K0 and that y 7→ ψ0(x, y) is nonincreas-
ing. Let ψ be the solution of (3a), (3b). Then

ũ(t, x) = sup{y ∈ R; ψ(t, x, y) ≥ 0},
t ∈ (0, T ), x ∈ Rn

agrees with the L-solution of (1a), (1b).
The key observation for the proof is that the set
{ψ ≥ 0} (= {(t, x, y); ψ(t, x, y) ≥ 0} depends only
on K0 and is independent of the choice of ψ0. This is
a typical uniqueness property of a level set equation.
It is based on invariance of solution under the change
of the dependent variable as stated below (which is
slightly more general than stated in references [9],
[10], [4], [11], [14] since θ need not be continuous).

Lemma 4 (invariance). Assume that ψ is a
subsolution (resp. supersolution) of (3a). Assume
that θ is upper (resp. lower) semicontinuous and
nondecreasing. Assume that θ 6≡ −∞ (resp. θ 6≡
+∞). Then the composite function θ ◦ ψ is also a
subsolution (resp. supersolution of (3a)).
If {ψ ≥ 0} were a bounded set, a comparison prin-
ciple for (3a), (3b) and Lemma 4 would yield the
uniqueness of {ψ ≥ 0} as in [10], [4], [11]. However,
since {ψ ≥ 0} is unbounded, we actually argue as in
[14] to get the uniqueness of {ψ ≥ 0}.

3. Consistency. We shall compare other
notion of solutions.

Theorem 5. Let u be the L-solution of (1a),
(1b) with u0 ∈ USC (Rn). Then u be a viscosity
solution of (1a) provided that u does not take ±∞.

Sketch of the proof. Let ψ be the solution of
(3a), (3b) with ψ0 in (4). By Lemma 4 the function
I− ◦ ψ is a subsolution of (3a), where I−(σ) = 0 for
σ ≥ 0 and I−(σ) = −∞ for σ < 0. From this it is
easy to see that u is a viscosity subsolution.

To prove that u is a viscosity supersolution we
need to use the fact that y 7→ ψ(x, y) is nonincreas-
ing. This implies that the lower semicontinuous en-
velope (u)∗ of u equals

u(t, x) = inf{y ∈ R; (t, x, y) ∈ {ψ < 0}}
t ∈ (0, T ), x ∈ Rn.

Since I+ ◦ (ψ + 1/m) is a supersolution of (3a) by
Lemma 4, we see, by stability as m→∞, that

Ψ(t, x, y) =
{
∞ for (t, x, y) ∈ int{ψ ≥ 0},
0 for (t, x, y) ∈ {ψ < 0}

is a subsolution of (3a), where I+(σ) = 0 for σ ≤ 0
and I+(σ) = ∞ for σ > 0. Thus u is a supersolution.

Theorem 6. Assume that u0 is bounded, uni-
formly continuous. Then the bounded, uniformly
continuous viscosity solution u of (1a), (1b) is an
L-solution.
This follows from Theorem 3 by choosing

ψ = ((y − u(t, x)) ∧M) ∨M for M = sup |u|.

Theorem 7. Assume that p 7→ H(x, p) is
concave. Let u be the L-solution of (3a), (3b) with
u0 ∈ USC (Rn) and supu0 <∞. Then u is a bilate-
ral viscosity solution with initial data u0.

For the proof we use the property that the bi-
lateral viscosity solution is given as a monotone limit
of continuous viscosity solution [3]. Thus the proof
is reduced to the next lemma.

Lemma 8. Assume that u0ε ↓ u0 ∈ USC (Rn)
with u0ε which is Lipschitz in Rn. Assume that u0ε

≥ u0ε′ + ε− ε′ for ε > ε′ > 0. Let uε be the solution
of (1a), (1b) with u0 = u0ε. Then limε→0 uε is an
L-solution of (1a), (1b) (so that it agrees with u).
The sequence u0ε is easily constructed by setting
u0ε = uε

0 + ε with sup-convolution uε
0 of u0.

4. Right accessibility. It is not clear in
what sense the initial value is attained for L-solutions
(unless initial data is continuous.) Since the viscosity
solution of (3a), (3b) with ψ0 in (4) is continuous up
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to t = 0, the set {ψ ≥ 0} is closed in [0, T )×Rn×R
so that

(8) u0(x) ≥ lim
t↓0

y→x

u(t, y).

However, in general it is not clear whether there is a
sequence tm → 0, ym → x such that

(9) u0(x) = lim
m→∞

u(tm, ym).

We call this last property the right accessibility
as in [5]. Since u is upper semicontinuous in
[0, T )×Rn, the property (9) is equivalent to u0(x) =
(u|(0,T )×Rn)∗ (0, x). We give a simple criterion for
right accessibility.

Lemma 9. Assume that F ∈ C(RN ) is posi-
tively homogeneous of degree one. Let A be a closed
convex set in RN . Let w be the L-solution of

wt + F (wz) = 0, z ∈ RN , t > 0; w|t=0 = w0.

with w0(z) = 0, z ∈A and sup{w0(z); dist(z,A)≥ δ}
< 0 for δ > 0. Then

w(t, z) =
{

0 z ∈ A+ tWα

< 0 otherwise.

Here

Wα = {z ∈ RN ; sup
|p|=1

(z · p− α(p)) ≤ 0},

α(p) = −F (−p).

The set Wα is often called the Wulff shape with re-
spect to α if α is positive. The set Wα may be empty.
For example if F (p) = |p|, then Wα = ∅. If we
consider (1a), (1b) with H(p) = |p| and u0(x) = 0,
x = 0; u0(x) = −∞, x 6= 0, then the L-solution
u(t, x) = −∞ for all t > 0. This is easy to prove
since v(t, x) = −mt −m|x| is a continuous solution
for all m > 0 and u ≤ v by Theorem 2. For this
problem (9) for u is not fulfilled.

Theorem 10. If H is positively homogeneous
degree of one, and independent of x, then an L-
solution is right accessible for any u0 ∈ USC (Rn)
if and only if Wα 6= ∅.

Remark 11. Our results up to §3 can be gen-
eralized for more general equation

ut +H(x, u, ux) = 0,

when H fulfills
(i) H ∈ C(Rn ×R×Rn) and H∞ exists;

(ii) There exists a modulus m1 that satisfies

|qH(x, y − p/q)− qH(x′, y′,−p/q)|
≤ m1((|x− x′|+ |y − y′|)(|p|+ |q|+ 1))

for all x, y, x′, y′ ∈ Rn, p ∈ Rn, q < 0;
(iii) For each C1 > 0 there exists a modulus m2 such

that

|qH(x, y − p/q)− q′H(x, y,−p′/q′)|
≤ m2(|p− p′|+ |q − q′|)

for all x ∈ Rn, y ∈ R, p, p′ ∈ Rn, q, q′ < 0
satisfying |p|, |p′|, |q|, |q′| ≤ C1;

(iv) y 7→ H(x, y, p) is nondecreasing.
A typical example of H satisfying these as-

sumptions is a(x)
√
b+ |p|β and a is Lipschitz and

0 ≤ β ≤ 1, b ≥ 0.
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