Invariance of strong paracompactness under closed-and-open maps

By David BUHAGIAR*)

Department of Mathematics, Okayama University, Okayama 700-8530 (Communicated by Kiyosi ITÔ, M. J. A., June 23, 1998)

Abstract: In this paper we strengthen a result of Ponomarev [6] on the invariance of Strong Paracompactness under open perfect maps. Namely, we prove that Strong Paracompactness is invariant under closed-and-open maps. This result follows after we give four new characterizations of strong paracompactness.

Key words: Strong paracompactness; closed-and-open maps.

§1 Preliminaries. In this paper by a space we mean a Hausdorff topological space and by a map, a continuous map of spaces.

Strongly paracompact spaces were defined by Dowker [2]. Unlike most covering properties, strongly paracompact spaces are not invariant under perfect maps [1]. This can be seen from the following result by Ponomarev [5].

Theorem 1.1. Every paracompact space is the image of a strongly paracompact space under a perfect map. \Box

Ponomarev [6] has shown that strong paracompactness is an invariant of open perfect maps. Indeed, Ponomarev [7] strengthened this result by showing that strong paracompactness is preserved under Λ -maps in the realm of regular spaces, where a map $f: X \rightarrow Y$ is called an Λ -map if it satisfies the following two conditions : (a) the image of every clopen (closed-and-open) set is a clopen set and (b) for every point $y \in Y$ and every cover \mathcal{U}_{u} of the set $f^{-1}y$ by clopen sets admits a finite subcover. The aim of this paper is to show that in fact in the realm of regular spaces, strong paracompactness is preserved under CO-maps, that is maps satisfying condition (a) above. As a consequence we get that strong paracompactness is an invariant of closed-and-open maps (i.e. maps which are both closed and open).

Let $\mathscr{P} = \{P_{\alpha} : \alpha \in \mathscr{A}\}$ be a collection of subsets of a set X. By a *chain* from P_{α} to $P_{\alpha'}$ we mean a finite sequence $P_{\alpha(1)}, P_{\alpha(2)}, \ldots, P_{\alpha(k)}$ of

elements of \mathscr{P} such that $\alpha(1) = \alpha$, $\alpha(k) = \alpha'$ and $P_{\alpha(i)} \cap P_{\alpha(i+1)} \neq \emptyset$ for $i = 1, \ldots, k-1$. The collection \mathscr{P} is said to be *connected* if for every pair P_{α} , $P_{\alpha'}$ of elements of \mathscr{P} there exists a chain from P_{α} to $P_{\alpha'}$. For every collection \mathscr{P} the *components* of \mathscr{P} are defined as maximal connected subcollections of \mathscr{P} , that is connected subcollections of \mathscr{P} which are not proper subsets of any connected subcollection of \mathscr{P} .

Remember that a collection \mathscr{P} of subsets of a set X is said to be star-finite (star-countable) if for every $P \in \mathscr{P}$ the collection $\{Q \in \mathscr{P} : Q \cap P \neq \emptyset\}$ is finite (countable). A space X is called *strongly paracompact* (otherwise called *hypocompact*) if every open cover of X has a star-finite open refinement. Thus every strongly paracompact space is paracompact but the converse is not true. In fact there exist metric spaces which are not strongly paracompact [1].

The following lemma will be used below (see for example [1] or [3]).

Lemma 1.2.

- (1) Every collection \mathcal{P} of subsets of a set X decomposes into the union of its components.
- (2) If \mathcal{P}_1 and \mathcal{P}_2 are distinct components of \mathcal{P} , then $(\cup \mathcal{P}_1) \cap (\cup \mathcal{P}_2) = \emptyset$.
- (3) If \mathcal{P} is star-countable, then each component is a countable subcollection of \mathcal{P} .

For a collection \mathscr{P} of subsets of a set X and an infinite ordinal number τ let $\mathscr{P}^{\tau} = \{ \bigcup \mathscr{Q} : \mathscr{Q} \subset \mathscr{P}, |\mathscr{Q}| < \tau \}$. The collection $\mathscr{P}^{\omega} = \mathscr{P}^{\omega_0}$ is usually denoted by \mathscr{P}^{F} . In this paper we will be interested in the particular case of $\tau = \omega_1$, the first uncountable ordinal. Thus \mathscr{P}^{ω_1} is the collection of all unions of at most countable subcollections from \mathscr{P} .

¹⁹⁹¹ Mathematics Subject Classification. Primary 54C10, 54D20,

^{*)} Department of Mathematics, Shimane University, Matsue 690-8504.

§2 Characterizations of strongly paracompact spaces. We now turn to the known characterizations of strong paracompactness.

Theorem 2.1. For every regular space X the following conditions are equivalent:

- (i) The space X is strongly paracompact;
- (ii) Every open cover of the space X has a closed refinement which is both locally finite and star-finite;
- (iii) Every open cover of the space X has a closed refinement which is both locally finite and star-countable;
- (iv) Every open cover of the space X has a star-countable refinement. \square

This theorem was proved by Smirnov [8]. One can state the following result as a corollary (which was proved earlier by Morita [4]).

Corollary 2.2. Every Lindelöf space is strongly paracompact.

We now prove other characterizations for strongly paracompact spaces.

Theorem 2.3. For every regular space X the following conditions are equivalent:

- (i) The space X is strongly paracompact;
- (ii) For every open cover \mathcal{U} of the space X, \mathcal{U}^{ω_1} has a disjoint open refinement (i.e. an open refinement of order 0);
- (iii) For every open cover \mathcal{U} of the space X, \mathcal{U}^{ω_1} has a closure preserving clopen refinement;
- (iv) For every open cover \mathcal{U} of the space X, \mathcal{U}^{ω_1} has a σ -closure preserving clopen refinement;
- (v) For every open cover \mathcal{U} of the space X, \mathcal{U}^{ω_1} has a σ -discrete clopen refinement.

Proof. We start with (i) \Rightarrow (ii). Let the space X be strongly paracompact and let \mathcal{U} be an open cover of X. Then by definition, the cover \mathcal{U} has a star-finite open refinement \mathcal{V} . It is not difficult to see that (ii) follows after applying Lemma 1.2 to the cover \mathcal{V} .

The implication (ii) \Rightarrow (iii) follows from the trivial fact that any disjoint open cover is closure preserving and the implication (iii) \Rightarrow (iv) is evident.

We now prove the implications (iv) \Rightarrow (v) and (v) \Rightarrow (ii). Let the space X satisfy condition (iv) and let \mathscr{U} be an open cover of X. Then the cover \mathscr{U}^{ω_1} has a σ -closure preserving clopen refinement $\mathscr{F} = \bigcup_{n=1}^{\infty} \mathscr{F}_n$, where each \mathscr{F}_n is a closure preserving clopen collection. Let $\mathscr{F}_n = \{F_{\alpha}:$ $\alpha < \gamma_n$ be a well-ordering of \mathscr{F}_n for every $n \in \mathbb{N}$. For every $F_\alpha \in \mathscr{F}_n$ let $W_\alpha = F_\alpha \setminus \bigcup_{\beta < \alpha} F_\beta$ and for every $n \in \mathbb{N}$ let $\mathscr{W}_n = \{W_\alpha : F_\alpha \in \mathscr{F}_n\}$. It is not difficult to see that each \mathscr{W}_n is a discrete clopen collection and so $\mathscr{W} = \bigcup_{n=1}^{\infty} \mathscr{W}_n$ is a σ -discrete clopen refinement of \mathscr{U}^{ω_1} . Thus condition (v) is satisfied. Let $P_n = \bigcup \mathscr{W}_n = \bigcup \{W_\alpha :$ $W_\alpha \in \mathscr{W}_n\}$ for every $n \in \mathbb{N}$. Then P_n is a clopen set and therefore $Q_n = \bigcup_{k=1}^n P_k$ is also clopen for every $n \in \mathbb{N}$. Let $\mathscr{Q}_1 = \mathscr{W}_1$ and $\mathscr{Q}_{n+1} = \{W \setminus Q_n :$ $W \in \mathscr{W}_{n+1}\}$ for every $n \in \mathbb{N}$. The collection $\mathscr{Q} =$ $\bigcup_{n=1}^{\infty} \mathscr{Q}_n$ is a disjoint open refinement of \mathscr{U}^{ω_1} and thus (ii) is satisfied.

Finally we show the implication (ii) \Rightarrow (i). Let the space X satisfy condition (ii) and let \mathcal{U} be an open cover of X. Then the cover \mathcal{U}^{ω_1} has a disjoint open refinement \mathcal{V} . For every $V \in \mathcal{V}$ choose an element $G(V) \in \mathcal{U}^{\omega_1}$ such that $V \subset$ G(V). By definition one can choose a countable collection $\mathcal{U}(V) = \{U_n : U_n \in \mathcal{U}, n \in \mathbb{N}\}$ such that $G(V) = \bigcup \mathcal{U}(V)$. Let $\mathcal{W}(V) = V \land \mathcal{U}(V)$ $= \{V \cap U_n : U_n \in \mathcal{U}(V)\}$. The cover $\mathcal{W} =$ $\bigcup \{\mathcal{W}(V) : V \in \mathcal{V}\}$ is easily seen to be a starcountable open refinement of the cover \mathcal{U} and thus (i) follows from condition (iv) of Theorem 2.1. \Box

§3 CO-Maps and strong paracompactness. In this section we prove our main result concerning the invariance of strong paracompactness under closed-and-open maps (CO-maps for regular spaces).

Theorem 3.1. Let f be a CO-map of a strongly paracompact space X onto a regular space Y. Then the space Y is also strongly paracompact.

Proof. Let \mathcal{U} be an open cover of the space Y. Then $f^{-1}\mathcal{U}$ is an open cover of X and so there exists a closure preserving clopen refinement \mathscr{V} of $(f^{-1}\mathcal{U})^{\omega_1}$. Since the map f is a CO-map we have that the cover $f\mathscr{V}$ of Y is a clopen refinement of \mathcal{U}^{ω_1} . For every subcollection $\mathscr{V}' \subset \mathscr{V}$ we have $f(\bigcup \mathscr{V}') = \bigcup f\mathscr{V}'$ and so the clopen cover $f\mathscr{V}$ is closure preserving. This proves that the space Y is strongly paracompact by Theorem 2.2 (iii).

Finally, since regularity is an invariant of closed-and-open maps we have.

Corollary 3.2. Let f be a closed-and-open map of a strongly paracompact space X onto a space Y. Then Y is also strongly paracompact. \Box

References

- [1] D. K. Burke: Covering properties. Handbook of Set-Theoretic Topology (eds. K. Kunen and J. E. Vaughan). North-Holland, Amsterdam, pp. 347-422 (1984).
- [2] C. H. Dowker: Mapping theorems for non-compact spaces. Amer. J. Math., 69, 200-242 (1947).
- [3] R. Engelking: General Topology. Heldermann, Berlin, rev. ed., 1989.
- [4] K. Morita: Star-finite coverings and star-finite properties. Math. Japonicae, 1, 60-68 (1948).
- [5] V. I. Ponomarev: On paracompact spaces and their

continuous mappings. Soviet Math. Dokl., **3**, 347-350 (1962).

- [6] V. I. Ponomarev: On the invariance of strong paracompactness under open perfect mappings. Bull. Acad. Pol. Sci. Ser. Math., 10, 425-428 (1962) (Russian).
- [7] V. I. Ponomarev: Star-finite coverings and open and closed sets. Soviet Math. Dokl., 10, no. 3, 709-712 (1969).
- [8] Ju. M. Smirnov: On strongly paracompact spaces. Izv. Akad. Nauk SSSR Ser. Mat., 20, 253-274 (1956) (Russian).