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Exotic group actions in dimension four and Seiberg-Witten theory
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Topology of smooth 4-manifolds has been
studied extensively by Donaldson and Seiberg-
Witten theory. In [10] we used Donaldson in-
variants of degree 0 to give examples of exotic
free actions of certain finite groups in dimension
4. In this paper we will generalize the result in
[10] by Seiberg-Witten theory. We discuss
Donaldson and Seiberg-Witten invariants for
connected sums of 4-manifolds and rational
homology 4-spheres in §1 according to [11]. In
82 by the constructions similar to those in [10]
together with Cooper-Long’s result [1] we show

Theorem. For any nontrivial finite group G
there exists a 4-manifold that has infinitely many
free G actions so that their orbit spaces are
homeomorphic but mutually non- diffeomorphic.

§1. Invariants for some reducible manifolds.
Let us recall the definitions of Donaldson and
Seiberg-Witten invariants briefly. See [2], [6], [8],
[12] for details. Let X be a closed smooth
oriented 4-manifold with b,(X) =0, b, (X) > 1
and let P be a principal SO (3) bundle over X
with w,(P) = w (mod 2) for some w € H*(X, Z)
(and hence P is a reduction of a U(2) bundle P).
Hereafter w (mod 2) is denoted simply by w. Let
Yp be the set of automorphisms of P covered by
those of P with det = 1. Define J(, to be the
space of ASD (anti-self-dual) connections modulo
9, with respect to a generic metric on X. Then
for the symmetric product z = xtvl' ‘v with the
generator z of Hy(X) and v; € H,(X), there ex-
ists a subspace Mp N V, of codimension 4t +
2s in JMp such that the Donaldson invariant
Dy (z) is defined by the number of points in M,
N V, counted with sign for a bundle P with w,(P)
=w and —2p, (P) —3 A + b, (X)) =4t+
2s (put Dy (z) = 0 if there does not exist such a
bundle). Here note that if there are no flat con-
nections on any SO (3) bundle over X with w,
= w then My N V, is compact ([6]). Otherwise to
avoid the flat connections we replace (X, P) by
(X#CP? P#Q), where Q is the reducible

S0 (3) bundle over CP® with w, being the Poin-
care dual of the generator z, of H, (CP* Z)
modulo 2, and replace Dy (2) by Dyjes (22,)
(Morgan-Mrowka trick, [6]). In Seiberg-Witten
theory, we consider a spin® structure ¢ on X, the
associated £ spinor bundle W=, and its determi-
nant complex line bundle L over X. Then the
Seiberg-Witten moduli space Jly(c) is the space
of pairs of connections A on L and cross sections
¢ of w satisfying the Seiberg-Witten equation
modulo Map (X, SY).

(SW) D,(¢) =0, F'(A) + 6 = (¢* @ §),
(see [8],[12] for the definitions.) The space
My (c) is a compact oriented manifold of dimen-
sion d(L) = (¢,(L)* — 2x — 30)/4 for a generic
metric on X where x and o are the euler number
and the signature of X. Hereafter ¢, (L) is de-
noted simply by L. The Seiberg-Witten (SW)
invariants SWy (L) for L with d(L) = 0 is the
sum of the numbers of points in My (c) counted
with sign for all spinc structures ¢ corresponding
to L. (see [8] for the definition in case d(L) > 0.)
L is called a Seiberg-Witten (SW) class if SWy
(L) # 0. X is called SW simple if SWy(L) =0
whenever d (L) > 0. Hereafter we assume that
H,(X,Z)=0,b;,(X)>1, and Y is a rational
homology 4-sphere. Moreover we assume that X
is SW simple and KM simple, that is, D;)(xzz) =
4Dy (2) for any we€ H*(X,Z), z € Sym (H,
(X)® H,(X)), and satisfies the following
equation discussed in [12].

(W) Dx((1 + 2/2)e")

— 22+(7x+110>/4eo/22(_ 1)(w2+wL)/zSWX(L)eL(v)
where v € H,(X), Q is the intersection form of
X, and the sum on the right hand side is taken
over all the SW classes L of X.

The following results about these invariants
for X#Y may be known to the experts, but we
cannot find them in explicit forms in the litera-
ture.

Proposition 1.1 [11]. If X satisfies the above
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conditions, then so does X#Y. For any v € H,(X,
R) = H, (X#Y,R) and for any w+ w € H®
(X,Z)D H*(Y,Z), the both sides of (W) for
X#Y are |H (Y, Z)| times those of (W) for X, v,
and w.

Proposition 1.2 [11]. (1) For each w’ € H?
(Y, Z) with w = w,(Y) (mod2) there exists a
complex line bundle L' over Y with ¢,L' = w’ and
the set of SW classes of X # Y is given by {L + L’
| L is a SW class for X, L’ = w,(Y) (mod2)}. The
contribution of any spinc structure associated with L
+ L’ to SW invariants is the same as SWy (L),
and SWyyy (L+ L") = |H (Y, Z,)|SWy (L). (2)
The number of L' with L’ = w,(Y) (mod2) equals
|H (Y, Z)|/|H\(Y, Z,)|.

These propositions are proved by the stan-
dard Uhlenbeck theory. In either case the value
of the invariant for X#Y is the product of that
for X and the contributions from flat connections
on Y. But to treat the case when H,(Y, Z) has
2- torsions we need the following observations
[11].

(1) For any w’ € H*(Y, Z) there exists a
unique flat SO(3) bundle over Y with w,
= w’ (mod2). Any SO (3)-bundle P over
X#Y with w,(P) =w+ w € H*(X, Z)
@ H*(Y,Z) (mod2) is the sum of the
SO (3)-bundie Py over X with w,(Py) =
w (mod2) and the flat SO (3) bundle Py
with w,(Py) = w’ (mod 2).

(2) The moduli spaces of ASD connections
over any bundle P over X # Y in (1) for a
generic path of metrics have no SO(2) nor
0O(2) reducible connections, and hence
D;’;,‘f is well-defined after the Morgan-
Mrowka trick.

(3) 9, is the kernel of some map from Aut
Pto H' (X #Y,Z,). In our case we can
see by obstruction theory that this map is
surjective.

In Donaldson’s case we can see that the con-
tribution from the conjugacy classes of the
SO (3) representations of 7, Y to the intersection
of the space of ASD connections modulo AutP
and V, equals |H,(Y, Z)|/|H,(Y, Z,)|. But AutP
acts freely on the space of ASD connections by
(2) and AutPy = 9, since H,(X, Z) = 0, so the
contribution from Y to M, N V, is |H,(Y, Z)| by
(3). In Seiberg-Witten’s case, the contribution of
any spin® structure on Y is 1 because there is no
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obstruction to constructing the solution from the
pair of SW solution for X and that for Y, which
is a pair of a flat connection and a zero spinor.
We also note that w,(Y) is a mod 2 reduction of
some element in H?(Y, Z). Thus we obtain the
desired result.

Remark. In [10] the contribution of Y (de-
noted by ¢;) to the space of ASD connections
modulo the full gauge group, which equals |H1
(Y, Z2)|/|H, (Y, Z,)|, is considered when 7,Y =
G is the fundamental group of a spherical 3-
manifold.

§2. Examples of exotic free actions. First
consider a nucleus N (k) for k € Z ([4]), whose
framed link picture is given by the union of the
trefoil knot with framing O and its meridian with
framing — k. Any N (k) contains a regular neigh-
borhood N(f) of a cusp fiber f of the elliptic
surfaces, and N(f) contains a 2-torus T of
square O (a general fiber). For any 4-manifold X
containing N (k), denote by X, (resp. N(k),) the
resulting manifold after p-surgery along T on X
(resp. N(k))(3], [9]). In N(k), and in X, there is
a multiple fiber f, such that pf, is homologous to
f. Now we consider a pair of closed oriented
4-manifolds (X, Y) satisfying the following con-
ditions.

(i) H(X,Z)=0,b,(X)>1, Nk C X,

and X has a SW class.

(ii) Y is a rational homology 4-sphere with
an epimorphism from 7;Y to a nontrivial
finite group G such that the associated
G-covering Y of Y is of the form S* X S®
# Z for some 4-manifold Z.

Proposition 2.1 [4]. N(k), is spin if and only
if k is even and p is odd. There is a homeomorph-
ism between N(k), and N(k), inducing the identi-
ty on the boundaries if and only if both of them are
spin or both of them are non-spin. X, and X, are
homeomorphic under the same condition.

Proposition 2.2 [7], [5].. There is a dif
feomorphism between N (k),# S* x S* and N (k),
#5° x §? inducing the identity on the boundaries
and also a diffeomorphism between X,#S* X S* and
X, #S° % S%, if and only if k, p, p’ satisfy the
same condition as in (2-1).

Proposition 2.3 [3], [9]. The SW classes for
X, are given by {L+ (p—2a—1)f,|0<a
Sp—1,L is a SW class for X} with SWy (L
+ @ —2a—1)f,) = SWy(L). Here L-f=L-T
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= 0 and L belongs to both H*(X, Z) and H* (X,,
7).

Note that X and X, are SW simple [9],
Corollary 1.6. Next consider the coverings X, #Y
of X, #Y associated with 7, (X, #Y) — =, (¥Y) —
G.

Proposition 2.4. (1) X, #Y and X,  # Y are
not diffeomorphic if p  p’. (2) X, #Y and X, X, #Y

are homeomorphic and also X, X, #Y and X, # ¥ are
diffeomorphic under the same condition as in Prop-
ostition 2.2.

Proof. (1) comes from (1-2) and (2-3),
which show that the numbers of SW classes for
X,#Y'’s are different for different p’s since f, is
not a torsion class. The first part of (2) comes
from (2- 1) Flnally we have X, X, #Y=TV# |G|X
=Z#S"x S*# |G|X, and apply (2-2) on each
X, summand successively to show the rest.

The typical examples satisfying (i) are 1-
connected elliptic surfaces E (k) without multiple
fibers which contain N (k) (many other examples
are now known). To obtain Y satisfying (ii) con-
sider any rational homology 3-sphere M with an
epimorhism from 7, M to G and take an untwisted
(resp. a twisted) spin s(M) (resp. s'(M)) of
M which is obtained from M x S’ by untwisted
(resp. twisted) surgery along a curve * X
S'. Then both s (M) and s’ (M) are rational
homology 4-spheres with m,;s (M) = m;s (M)
n'lM Moreover the coverings M of M and s (M)
of s” (M) associated with 7, (s M) = 7, (M) —

G satisfy

Proposition 2.5. s (M) is diffeomorphic to
s #(6) — 1S* x S

Proof. There is a cobordism W between M
x S' and s (M) obtained from M x S' x [0,
11 by attaching |G| 2-handles h; along |G|
parallel circles *; X S* x {1} on M X‘-Sif {1},
whose framings are all untwisted for s(M), and
all twisted for s’ (M). By sliding Ak, (1 = 2)
along h; we can replace them by the 2-handles
attached along the trivial circles with untwisted
framings. Hence s’ (M) is obtained from s’ (M)
(obtained by 4,) by untwisted surgery on |G| — 1
trivial circles. This proves (2-5).

On the other hand Cooper-Long proved

Theorem [1]. Any nontrivial finite group G
acts freely on a certain rational homology 3-sphere
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M (as an orientation-preserving action).

For such M, the orbit space M = M/G is
also a rational homology 3-sphere with epi-
morphism 7, (M) — G associated with the cover-
ing M— M since H'(M, Q) = H'(M, Q)° =
Hence by using M we obtain the main theorem
from Proposition 2.4. For example, if Y =
s(M) and X = E (k) with k odd and k > 1 then
X, #Y are all homeomorphic, mutually non- dif-
feomorphic, but X, # Y are all diffeomorphic to s

(D # (Gl — DS* x S*#|GIE (k) = s (M) # (2k

|G| — 1)CP*# (10k|G| — 1)CP?.
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