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Introduction. Let k& be a field of character-
istic 0, G a linear algebraic group defined over k.
We are interested only in linear algebraic k-
groups, so the adjective “linear” will be omitted.
It is well-known (see e.g. [16]) that if G is com-
mutative, then for any finite extension k" of k,
there is the so-called corestriction map
Coresg i, (which will be denoted also by Coresg
to emphasize the group G, when the fields X/, k
are fixed):

Coresy: H'(K, G) = H'(k, G), ¢= 0,
where H? (L, H) denotes the Galois cohomology
H(Gal(L/L), H(L)) for a L-group H defined
over a field L of characteristic O (or a perfect
field L). However if G is not commutative, there
is no such a map in general and, as far as we
know, the most general sufficient conditions are
given in [14], under which such a map can be
constructed. The Corestriction Theory con-
structed there has many applications to theory of
algebras, representation theory and related ques-
tions. In this paper we are interested in the fol-
lowing natural question about the corestriction
map.

Assume that there is a map, which is functo-
rial in k:

a:H (k, G)— H'(k, T),
where T is a commutative k-group, G a non-com-
mutative k-group, i.e.,, & gives rise to a morphism
of functors (k I— H’ (k, G)) — (k|- H" (k, T))
(cf. also [17], Section 6.1). By restriction, for any
finite extension k’/k we have a functorial map
o :H (K, G)—H (K, T).

Question. When does Cores, (Im (o )) C
Im (a)?

If the answer is affirmative for all k', we say
that the Corestriction Principle holds for (the image
of) the map a. One defines similar notion for the

kernel of a map 8: H (k, T) — H (k, G).
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We say that the map « : H (k, G) — H(k, T)
is standard if it is obtained as a connecting map
from the exact cohomology sequence associated
with an exact sequence of k-groups involving G
and T. For example, let

1-A—B—C—1,
be an exact sequence of k-groups, where A is
considered as a normal k-subgroup of B. Then

H'(k, A —H(k,B),i=0,1,

and

H'(k, C)— H'(k, A)
are standard maps. In general, C is just a quo-
tient space and may not be a group. If A is a cen-
tral subgroup of G, then C is a group, and one
may define a connecting standard map Hl(k, C)
— H*(k, A).

It is worth mentioning that in some particu-
lar cases, the above question has an affirmative
answer unconditionally and the Norm Principle is
said to hold if it holds for p = g = 0 (which
approves the adjective norm). There are some ex-
amples to support this principle, for example, by
considering reduced norm in division algebras,
the Scharlau norm principle ([18, 20]), etc. A new
kind of Corestriction Principle over local and
global fields has been found by P. Deligne [5],
Prop. 2.4.8, which, in the case of characteristic 0
and in notations of abelian Galois cohomology [1],
[12], Appendix B), says that the Corestriction
Principle for images holds for the map

abg: H'(k, G) — H),(k, G).

However, given any natural numbers # = 2,
v = 1, Rosset and Tate have constructed in [15]
an example of a field E containing the group g,
of n-th roots of 1, a finite Galois extension F of
E of degree 7, and an element x of K,(F), which
is a symbol, such that the image of x via the
trace

Trp;s: K,F— K,E
is a sum of at least 7 symbols. From this they de-
rive a symbol algebra of degree # over F, consi-
dered as an element of H?(F, ,), such that its
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image via the corestriction

Coresp,z: H(F, p,) — H(E, u,)
is not a symbol. Therefore the question above has
a negative answer for the standard map

A:H'(E,PGL,) = H*(E, u,).

Despite of this, we will see that in many interest-
ing cases, the Corestriction Principle for stan-
dard maps hold, especially in the case the field of
definition is a local or global field of characteris-
tico . In particular, our first main result in Sec-
tion 1 (Theorem 1.6) can be considered as a
generalization of the statement: The norm of a
symbol is a norm. In certain sense, it is a cohomo-
logical complement to the well-known result by
Lenstra [10] and Tate [19] that for a local or
global field F, every element of K,(F) is a sym-
bol, and it extends the result of deligne (above) to
higher dimensions. If the base field is an arbit-
rary field of characteristic 0, we discuss the rela-
tion between the corestriction principles for va-
rious types of standard maps.

1. Corestriction Principle in non-abelian
cohomology : local and global fields. We use the
notion and results from the Borovoi-Kottwitz
theory of abelian Galois cohomology of algebraic
groups as presented in [1]-[3](see also [12],
Appendix B, for a survey). We recall briefly that
for a connected reductive group G defined over a
field k of characteristic 0 with a maximal k-
torus T, let G be the simply connected covering
of the semisimple part of G with maximal torus
T, which is projected into a subtorus of T via the
isogeny G— G’: =[G, G]. One can define a
complex of tori T* = (T'— T) where T (resp. T)
is in degree O (resp.-1). Then

H,(k, G): = #'(k, T*)
where #' denotes the Galois hypercohomology of
the complex T * . Then it was shown that Hy,(k, G),
¢ = 0, satisfy usual functorial properties of a
cohomology theory, and there exist functorial
homomorphism and map, respectively

abe: H'(k, G) — HS,(k, G,
aby: H'(k, G) — H.,(k, G).

Our first main result of this section is the follow-
ing

1.1. Theorem. Let k be a local or global
field of characteristic 0, G a connected k-group, T a
connected commutative k-group and o : Hp(k, G)
— H(k, T) a standard map. Assume that G is a
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central extension of T if p = q = 2 where the 2-
cohomology is defined as in [7]. Then for 0 < p
< q < 2 the Corestriction Principle holds for the
image of .

The proof uses main results in the Galois coho-
mology of algebraic groups over local and global
fields, due to Kneser and Harder [9], [8] and also
abelianized Galois cohomology due to Borovoi
[1]-[3].

1.2. Remarks. It follows from the con-
struction of abcz; of [2], p. 228, that this map
satisfies the Corestriction Principle for images
for any field k of characteristic 0 and any con-
nected reductive k-group G.

2) Another proof of Theorem 1.1 (without using
abelianized Galois cohomology) follows from main
results of Section 2.

To be complete, together with the Corestric-
tion Principle for the images of standard maps,
we need also to consider the validity of this prin-
ciple for kermels of standard maps. Namely for a
standard map

a:H (K, T)— H'(k, G),
where T, G are connected k-groups with T com-
mutative, and for a finite extension k" of k with
the corestriction map Cores,: H(k', T ) —
H’(k, T), we ask

Question. When does Cores, (Ker (a @ k'))
c Ker (@) ?

By using Theorem 1.1 it is easy to see that
in the case k is a global or a global field of char-
acteristic 0, one is reduced to considering the
case p = g = 1. We have the following affirma-
tive result for local and global fields of charac-
teristic 0, and it is our second main result in this
section.

1.3. Theorem. Let k be a local or global
field of characteristic O and T a connected commuta-
tive k-subgroup of a connected k-group G. Then the
Corestriction Principle holds for the kernel of the
standard map o : H'(k, T) = H'(k, G).

The proof uses z-extensions, which are the
same as cross-diagram due to Ono [13]. Recall
that a connected reductive k-group H is a z-ex-
tension of a k-group G if H is an extension of G
by an induced k-torus Z, such that the derived
subgroup (semisimple part) [H, H] of H is sim-
ply connected. From the proof of Theorem 1.3 we
can deduce the following

1.4. Corollary. The Corestriction Principle
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for kernels of the standard maps H'(k, T)—
H' (k, G), where T and G are comnected groups
over a field k of characteristic O, T is commutative,
holds if and only if the same holds for all pairs
(T, G) with T a maximal torus of a simply con-
nected almost simple k-group G, all defined over k.
We derive the following consequence, which is a
slight generalization of a result of Deligne [5],
Proposition 2.4.8.

1.5. Theorem. With the above mnotation,
assume that G is a connected reductive k-group.
For any finite extension k' of a local or global field
k there is a canonical norm map

G(K)/ 7 (Gy(K)) — G(k)/m(G,(k)).
From Theorem 1.1 and 1.3 we derive the follow-
ing main result of this section.

1.6. Theorem. (Corestriction Principle) Let
G, T be connected linear algebraic groups, where T
1s commutative, all defined over local or global
field k of characteristic 0. Assume that «:

H’(k, G) = H'(k, T) (resp. B,: H'(k, T) —
H’(k, G)) is a standard map. Then for any finite
extension k'/ k we have

Cores; ,,(Im () € Im (),

(resp. Cores,.,.(Ker (B,)) < Ker (S, >

2. Corestriction Principle in non-abelian
cohomology : arbitrary field of characteristic 0. In
this section we will discuss some relation be-
tween the validity of Corestriction Principles for
standard maps of various type. As applications
we apply the results obtained to give new proof
of a result of Deligne that we used in Section 1.
Let k be a field of characteristic 0 and «a:
H’ (k, G) — H(k, T) be a standard map, where
p=0,1,q<p+1, G and T are connected re-
ductive k-groups, T is a torus. Denote by G
(resp. G) the simply connected covering (resp. the
adjoint) group of the semisimple part of G, F=
Ker (G— G), F’ = Ker (G'— G), where G’ is
the semisimple part of G. We consider the follow-
ing statements.
a) The Corestriction Principle for images holds
for any such a.

b) The Corestriction Principle for images holds
for H” (k, G) = H**' (k, F’) for p = 0,
1.

¢) The Corestriction Principle for images holds
for H (k, G) = H"" (k, F), for p = 0,
1.
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d) The Corestriction Principle for images holds
for abg: H’ (k, G) — Hj, (k, G) for any
such G.

For the statements a) —d) considered above,

let us denote by x(p, q) the statement x) evalu-
ated at (p, q), for 0 < p < g £ 2. For example,
a(l, 2) means the statement a) with p =1, ¢ =
2.
We will show later that if one of these conditions
holds (e.g. if k is a local or global field) then for
any isogeny of connected reductive k-groups
1— F— G,— G,— 1, the Corestriction Princi-
ple for the image of H (k, G,) = H**'(k, F), p
= 0, 1 holds.

We have the following results.

2.1. Theorem. 1) All statements a) — d) are

equivalent.
2) We have the following interdependence between
the statements a) — d) with particular values of p
and q.

a) For lower dimension :

a(0, 0) © b(0) & c(0) & d(0)
Y
a(0, 1)
b) For higher dimension :
a(1,1) © b(1) © c1) © d(1)
U
a(l, 2)
where two statements in the same row are connected
by & if they ave equivalent and the down arrow in-
dicates that the statements standing below follow the
ones standing above.

We just indicate the logical dependence and
the scheme of the proof of the statements of 1):
d=>a);a)=>d);bSc);0)Sa;a=>b).

From the proofs of propositions above we
derive several consequences.

2.2. Corollary. If either one of the conditions
a) or d) holds (e.g. if k is a local or global field of
characteristic Q) then for any isogeny of comnected
reductive k- groups

12 F—>G,— G,— 1,
the Corestriction Principle for images holds for stan-
dards maps
H'(k, G,) = H*'(k, F),p=0, 1.

2.3. Remarks. 1) From the proof of
Theorem 1.2, its corollary and Theorem 2.1 one
may deduce a new proof of Deligne’s result men-
tioned above ([5], Prop. 2.4.8) in the case k is a
local or global field of characteristic 0.
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Corollary. If k is a local or global field of
characteristic O then d (0) holds. In particular
Theorem 1.1 holds.

2) A known sufficient condition for ¢(0) to hold
is that the group of R-equivalence of G over k’
is trivial, ie., G (k')/R =1, since the Norm
Theorem for the group of elements R-equivalent
to 1 holds (see [6], Prop. 3.3.2). In [11], Theorem
1, Merkurjev proved, among other results, a
Norm Theorem from which the above result of [6]
follows.
3) The proof of Theorem 2.1 reduces the proof of
Corestriction Principle for images for connected
reductive groups to that of the maps

H (k, G) — H"'(k, F),
where F is the center of a simply connected semi-
simple k-group G with adjoint group G. It is
clear that we can reduce further to the case
where G is almost simple. In this case, the Cores-
triction Principle for images is known for the
case 'A,, B, (due to the rationality of G and the
result of Gille-Merkurjev mentioned above),
C,([20]).

3. Corestriction Principle for R-equivalence
groups. Let G be a k-group. Two points
x, y € G(k) are called strictly R-equivalent (af-
ter Manin) if there is a map f: P' — G defined
over k and regular at O and 1, such that f(0) =
x and f(1) = y (see [4] for more detalis). The
equivalence relation generated from this is called
R- equivalence. The subset R: = RG (k) of all
elements of G (k) which are R-equivalent to the
identity is a normal subgroup of G (k). It is well-
known (see [4]) that for a field k of characteristic
0, the factor group G (k)/R, called the group of
R-equivalence classes of G over k, is a birational
invariant of the group G. In general, the study of
the group G (k)/R provides interesting informa-
tion about the arithmetico-group-theoretic struc-
ture of the group G(k), especially because there
are many (even semisimple) groups with non-tri-
vial R-equivalence groups (even over number
fields).

In this section we are interested in the
Corestriction Principle for images for G (k)/R
over local and global fields of characteristic O.
We use the notion of standard maps introduced
in the introduction. By using our previous results
and a result of [6], we obtain.

3.1. Theorem. Assume that k is a local or
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global field of characteristic O. Then for any con-
nected reductive k-group G, a k-torus T, a stan-
dard map m: G(k) — T (k) and for any finite ex-
tension k' of k, the nmorm homomorphism T (k') —
T (k) induces a canonical fumctorial norm map for
images
Ny, Im (G()/R— T(K)/R) = Im (G(k)/R— T(k)/R).

3.2. Corollary. With above notation, for any

isogeny of connected k- groups
1-F—>H—G—1,
with finite F, the Corestriction Principle for images
holds for the map
G(k)/R— (Im (0))/R,

where 8 is the connecting map G (k) — H' (k, F),
and the R-equivalence in Im (0) is induced from
that of G(k) as defined in [6)].
The proof uses Ono’s crossed diagram as in the
course of proving Theorem 2.1.
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