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A remark on 2-microhyperbolicity
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(Communicated by Kiyosi IYO, M. J. A., March 12, 1998)

Introduction. The notion of microhyperbo-
licity due to Kashiwara-Kawai [3] has played an
important role in many problems concerning ex-
istence and regularity of solutions of linear PDE
in microfunctions. When we study microfunction
solutions from a second microlocal point of view,
new phenomena appear. In fact, the basic notion
is that of the second wave front set, and this no-
tion is already for opportunity reasons closely
related to that of second-hyperfunctions, respec-
tively second-microfunctions. (We shall call them
2-hyperfunctions and 2-microfunctions hence-
forth). It is then natural to introduce the notion
of 2-microhyperbolicity, a notion which turns
out to be quite efficient for regularity problems
(cf. N. Tose [11]) but which seems to have no im-
mediate applications for existence problems in
standard microfunctions, in view of the fact that
the space of 2-hyperfunctions is much larger
than is the space of microfunctions.

The main purpose of the present paper xs to
clarify the situation by examining an example
which is modelled on the classical Mizohata oper-
ator. Indeed, this operator shall be 2-microhy-
perbolic (with respect to some regular involutive
homogeneous submanifold in the phase space), it
will be solvable in 2-hyperfunctions, but we
shall see that it is not solvable in standard micro-
functions (see Theorem 2.1 below). Since we
think that the primary object of study should al-
ways be the "equation" and since we "believe" in
the importance of the notion of 2-microhyper-
bolicity, we expect that this example gives an
additional argument in favour of 2-hyperfunc-
tions as the correct frame in which one should
perform 2-microlocal arguments.

1. Preliminaries. 1.1. 2-microlocal analy-
sis. Since the problem is microlocal, we take,
from the beginning, a local model V of a regular
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involutive homogeneous submanifold in the cotan-
gent bundle (-- 1 T*Rn

defined by
(1) V’=((x;Vf.dx) e(--:-T*R";l d 0).
Here x-- (xx, xn) is a system of coordin-
ates in Rn Rn

and se (el, en) are the
dual coordinates. We take the complexification of
Vin T*Cn

defined by
(2) Vc’ ((z; {.dz) T’C"; 0}.
where z (Zl, zn) is a complex coordinate
system of Cn

corresponding to x and - (,
n) are the dual coordinates. Then a partial

complexification of V in vCis given by
(3) 17:- {(z; ’dz) C T*cn; 1 d 0,

z+ z, 0, + , 0}.
This space can be identified with the conormal
bundle TCn

of
(4) N" (z C"; z+ z,,,= 0).
The space is endowed with the sheaf cg9 of
microfunctions with holomorphic parameters z’

(z, za) which is defined by
(5) cg H.- (p(0c.))
by means of the Sato’s microlocalization functor
along N (refer to Kashiwara-Schapira [4] for
this). First remark that the sheaf s" cgp[ v is
a subsheaf of the sheaf cgR. of microfunctions on
Rn. Thus we have an exact sequence

on V. To analyze the gap between the two
sheaves, M. Kashiwara introduced the sheaf ,
of 2-microfunctions along V on Tv*V by
(7) (g" Ha (tv(cg)).
The sheaf gives rise to the exact sequences
(8) o v.Iv v,
and
(9) 0 )v v rv, ((g O.
Here the sheaf (gv restricted to the zero-section
Vof Tv*V
(10) 3" lv
is the sheaf of 2-hyperfunctions, and

v ,9. Tv*P\ V--. V
is the natural projection. It should be noted that
the morphism R,[v -- Y3 is not surjective, and
we refer to Kataoka-Okada-Tose [5] for an expli-
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cit example of why this is the case.
Moreover we have the 2-spectral morphism

(with rv Tv*12--* V). By means of S, we define
the 2-singular spectrum SS (g) along V of a
microfunction g gg,]v by
(!2) SS() =supp(SPv(g)).

In view of (9), SS (g) gives rather precise
informations on the regularity of g if one studies
propagation of 2-microlocal singularities. On the
contrary, the sheaf does not seem to be the
adequate tool to study solvability of linear PDE
in the frame of classical hyperfunctions. To take
this into account, Kataoka-Okada-Tose [5] have
constructed a sheaf ( on v17 with the exact
sequence

o--* --, ov v
1.2. 2-microhyperbolic directions We recall

the notion of 2-microhyperbolic direction defined
by N. Tose [1 1] using the notations in 1.1.

Let be a coherent 8c module. Then a
co-direction 0 T*Tv*V is 2-microhyperbolic
along V for in the sense of N. Tose [11]if the
characteristic variety char () of satisfies the
condition
(14) 0 CT.(C(char(l))).
Here CT.(’) (resp. C(’)) is the normal cone
along T.I (resp. ), which is a subset in

TT.T* (resp. Tf,T*Cn). Moreover we consider
the identifications
(15) (-- H) -" TT.T*-- T*T.9and
(16) (-- H) -" Tf,T*C -- T*
by using the Hamiltonian isomorphism H. Refer
to Kashiwara-Schapi.ra [4] for a detailed account
of normal cones.

2. Main result. We follow the notation in

1. We assume, throughout 2, that d 2 and
that n --> 3.

Let P be a microdifferential operator of
order one of the form
(17) P- D + /-- lxD/D, + Po,
where Po is of 0-th order and P is defined in a
neighborhood of (0;v/- ldx). P is thus a
modification of the standard Mizohata operator
Q- D + v/- 1 xD and the solvability prop-
erties of P can in part be reduced to those of Q"
see the argument later on.

First we study the operator P on the regular
involutive submanifold

(18) V- ((x;v/- l.dx); - e- 0}.
Considered as a 2-microdifferential operator of
Y. Laurent [6], P is 2-elliptic outside

(19) E {(x;v/- 1 "" dx"; {-- 1 (x*dx --x *dx ) ? = 0),
where (x; v/- 1 "" dx") denotes a point of V
with x" (xa, xn). and

In fact, the 2-principal symbol of P is

(20)
where z* is the corresponding complex coordin-

ate of x* (j: 1, 2 ). It follows from the
2-ellipticity of P outside of that
(21) P v,q* v,q*

is surjective for q* vff\. Moreover a re-

sult of N. Tose [12] shows that P is equivalent to
n at q* . This means that there exists an
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invertible 2-microdifferential operator Q $c,q.
of infinite order satisfying

(22) QPQ-i D1,

which implies that (21) is surjective at q*
Now let us recall the exact sequence

((23) 0--- ,--’3v7v. r*, --0

on V and take into account the surjectivity of
,2

(24) P , --) v,
at q V, which is deduced from the Cauchy-
Kowalevsky type theorem for solutions due to
Bony-Schapira [1]. Then it follows that
(25) P" v,q -’- 3v,q
is surjective at any q V.

We show that for P, dx is 2-microhyperbo-
lic in the sense of N. Tose [11]. In fact, we have

(26) C9(’)q Cvc(’)q
at q V, and
(27) Cvc(char(P))q

(q* (Tv*); avc(P)(q*) 0}
(Zl*(q*) 0),

where we take a coordinate system of as (z’,
x";v/- 1 "" dx") with z’-- (z, z) and z* is

the dual variable of z (j-- 1, 2). It is then im-

mediate that
(28) dx Cr.v(C(char(P))).

Next we study the operator
~2 -2

(29) P Cv,q* --) v,q*
for q* v, respectively the operator
(30) P Cgle,,q --for
(31) qr’= (q V;x(q) =0, .(q) >0}.
A classical theorem due to M. Sato et al. [9] tells
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us that
(32) P R, -- R,is not surjective if

(33) q (s(-- 1T*R’; (s)
x(s) 0, (s) 4= 0, (s) > 0.

Thus if q F, then
(34) q supp(g./PgR,).
This implies that
(35) P R, R,
is not surjective at q F whatever q.we choose.
Next we study (29). First we remark that
(36) P" V,q V,o
is surjective if

(37) q*
This can be proved in many ways. For example,
express f (v,* as a boundary value of hoto-
morphic functions using a result of Okada-Tose
[8]. Then we can apply Bony-Schapiras method
[1], in particular Theorem 4.2.1 of [1], to solve
the equation in the complex domain 2-microlocal-

-2
ly. Another way is to construct a subring 8c of

8c enjoying the properties
(38) 8vC acts on v
and

-2
(39) ifavc(P) O, P 8vcP SvC.
This subring is implicity constructed in O. Liess

[71.
Next we study the case

(40) q* 0= {q* Z;xl(q*)=0}.
We remark that o consists of two connected
components
(41) Zo ((q; (-  z$dx )

o;x>O,qF}
and
(42) Zo ( (q v/- I x*dx)

o;X*<O,qF}.
It follows from the exact sequence

(43) 0--’ S/v--’ gR"lV v, 0
that the coherent $c module $c./$c P en-
joys an isomorphism
(44) Ext$. (, .,q)

-2= EXt$c. (, v,(q;nx))

at q V. (Remark that, as is explained in study-
ing solutions,
(45) Ext. (, Z,,) 0).
Thus at least at one point q* o the set

( (q dx ), (q },
the morphism

(47) P v.q*
is not surjective. We also note that P has simple
characteristics on char (l). Thus we haye an

isomorphism
(48) 8c./8c.P = 8c./8c.P
where Px is the principal part of P:
(49) P D + v/- lxD/D..
Since P is invariant under the coordinate change
(50) x x2,
we have an isomorphism

(51) Extc
Extc (2/, 2,= v,(q;-,/-x)).

Accordingly, we have shown that
(52) Extc. v,q*) #: 0
in both cases,
(53) q*= (q;v/- l dx) and

q* (q;--x/-- i dx).
We conclude that
(54) P
is not surjective at any point q* of
(55) E0 {q$ E; X (q$) 0}.

We summarize what we have obtained in

this section in
Theorem 2.1. Let P be a microdifferential

operator given in (17). Then we have

(i) the direction dx is 2-microhyperbolic in the
sense of N. Tose [11].

(ii the operator
(56) P" v,q* v,q*
is surjective for any q*

(iii the operator
(57) P 3v,q -* v,q
is surjective for any q V,

(iv) the operator
2 2

(58) P v.q* --* v.q*
is not surjective at any
(59) q* 2o= (q* ];x(q*)=0},

(v) the operator
(60) P Rn,q--- R",q
is not surjective if
(61) q F (q V x(q) 0}.
In particular, the equation Pu--f is solvable in

2-hyperfunctions at any q, but is not always
solvable within the frame of classical microfunc-
tions.

Remark 2.2. Let W denote the characteris-
tic variety of P. Then the regular involutive sub-
manifold Wo-- W fq {Z 0} in T*Cn

satisfies
the condition that
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is a regular involutive submanifold of T*Cn
of

codimension 2. Under this condition, we can find,
thanks to [10], a real quantized contact rans-
formation by which 0 is transformed into the
form
(63) {1 + --1/n 0}.
Moreover, since P is simple characteristic on W0,

P is transformed into
(64) P1 D1 + -- 1D/D,.
This observation makes it possible to show that
(65) P R, R,
is surjective if q e V satisfies
(66) (q) 0.

References

[1 J.-M. Bony and P. Schapira: Propagation des sing-
ularits analytiques pour les solutions des qua-
tions aux drivs partielles. Ann. Inst. Fourier,
26 (1), 81-140 (1976).

[2] M. Kashiwara and Y. Eaurent: Thormes d’an-
nulation et deuxime microlocalisation. Orsay
(1983) (Preprint).

[3] M. Kashiwara and T. Kawai: Microhyperbolic
pseudo-differential operators I. J. Math. Soc.
Japan, 27, 359-404 (1975).

[41 M. Kashiwara and P. Schapira: Sheaves on Man-
ifolds. Grundlehren der Math., 292, Springer-Ver-

lag, Berlin, Heidelberg (1990).
[5] K. Kataoka, Y. Okada, and N. Tose: Decomposition

of second microlocal analytic singularities.

D-modules and Microlocal Geometry (eds. M.
Kashiwara et al. ). Walter de Gruyter, Berlin, New
York, pp. 163-171 (1992).

[6] Y. Laurent: Thorie de la deuxime microlocalisa-
tion darts le domaine complexe. Progress, in

Mathematics, 53, Birkhuser (1985).
7 O. Liess: Conical Refraction and Higher Microloca-

lization. LN in Math., 1555, Springer-Verlag, Ber-
lin, Hidelberg (1993).

[8] Y. Okada and N. Tose: FBI transformation and
second microlocalization. J. de Math. Pures et

Appl., 70, 427-453 (1991).
[9] M. Sato, T. Kawai, and M. Kashiwara: Hyperfunc-

tions and pseudo-differential equations. LN in
Math., 287, Springer-Verlag, Berlin, Heidelberg,

New York, pp. 265-429 (1973).
[1’0] M. Sato, T. Kawai, and M. Kashiwara: The theory

of pseudodifferential equations in the theory of
hyperfunctions. Sugaku, Japan Math. Soc., 25(3),
213-238 (1973).

[11] N. Tose:On a class of 2-microhyperbolic systems.

J. de Math. Pures et Appl., 67, 23-37 (1988).
[12] N. Tose: 2nd microlocalization and conical refrac-

tion. Algebraic Analysis; Volumes in Honor of

Prof. M. Sato (eds. M. Kashiwara and T. Kawai).
vol. 2, Academic Press, San Diego, pp. 867-882
(1988).


