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Families of elliptic Q-curves defined over number fields
with large degrees
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Abstract : An elliptic curve E defined over Q is called a Q-curve, if E and E° are
isogenous over Q for any ¢ in Gal(Q/Q). Many examples of Q-curves defined over quadra-
tic fields have already been known. In this paper, we will give families of Q-curves defined

over quartic and octic number fields.

1. Introduction. Definition 1.1. Let E be
an elliptic curve defined over Q. Then E is cal-
led a Q-curve if E and its Galois conjugate E°
are isogenous over Q for any ¢ in Gal (Q/Q).
Moreover we call a Q-curve E of degree N if E
has an isogeny to its conjugate E° with degree
dividing N for any ¢ in Gal(Q/Q).

In Gross [2], E was assumed to have com-
plex multiplication, but we do not assume that in
this paper.

Q-curves are deeply connected with a mod-
ularity problem for a certain class of high dimen-
sional abelian varieties over Q. The following
conjecture, which is known as a generalized
Taniyama-Shimura conjecture, elucidates the re-
lation of Q-curves to the problem :

Conjecture 1.2 (Ribet). Every Q-curve is
modular, namely it is isogenous over Q to a fac-
tor of the jacobian variety of the modular curve
X,(N) for a positive integer N.

Recently many examples of Q-curves de-
fined over quadratic fields have been constructed
in [3], [4] and [8], and the validity of this conjec-
ture have been confirmed in these cases. Thus we
are interested in finding non-trivial examples of
Q-curves defined over number fields whose de-
grees are greater than two.

In his paper [3], Hasegawa has given families
of Q-curves of prime degree p under the condi-
tion that the modular curve X,(p) has genus
zero. In the present paper we obtain families of
Q-curves of degree N over quartic and octic
number fields, by dealing with the case where the
modular curve X,(N) is hyperelliptic and N is a
square-free positive integer.

2. Data on the modular curve X,(N). Let

N =1I/_,p, be a square-free positive integer.
We denote by X,(N) the modular curve corres-
ponding to the congruence subgroup I, (V) of
SL,(Z). For a positive integer d # 1 dividing N,
we define the Atkin-Lehner involution w, on
X,(IN), and denote by X¥(IN) the quotient curve
X,(N)/<w, | d| N>, where w, means the identity
morphism over X,(N). From now on we assume
that X,(N) is a hyperelliptic curve with genus g.
In order to state our main result, we need some
basic data about the modular curve X,(N), i.e. a
defining equation of X,(N) over Q, the action of
the Atkin-Lehner involutions w,, d|N, d # 1, on
X, (N) and a certain formula for the covering
map j from X, () to the projective j-line. We
can calculate these by using the method of [5]. In
the following, we sketch this method which is
based on the computation of the Fourier coeffi-
cients of some modular forms.

Let S,(I,(IV)) be the vector space over C of
cusp forms of weight two for I, (V). We note
that there is a natural isomorphism:

H'(X,(N), Qxa0/0) = S;(T(N)).
From the assumption that N is square-free and
X,(N) is hyperelliptic, any automorphism w,,

d|N, has no fixed cuspidal points, so y— 1  is

not a Weierstrass point, where v— 1 © is the
point of X,(N) represented by y— 1 . There-
fore we can choose a basis k..., h, of S,(I,(N))
with the following Fourier expansions:
(2 =q +s7V¢ 7+ o+ 57+ -,
() =q¢ " +s7¢ + -+, + -,
@ 2

h,(2) =q+s°¢+ - +s ¢+,
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Table I. Data on X,(N)

N flx)

d, (w,x, wyy)

22 2+ 4+ 4+ 2)@22° + 42 + 42+ 1)
26 2 —8x°+8zx* —182° + 82" —8xr+ 1

33| (@*+x2+3)

(x® + 72° + 28z + 59x° + 84x° + 63z + 27)

l-i). —
2 (3 — %) @ -

2 (5 %) 26,6, — 0
3, (% - %); 11, (z, — 9

1
35 @ +x—1) @ —52°—92° — 50— 1) 7, (-—;,——%);35, x, — v
X
1

39| @'+’ +r+ D@ - 72"+ 112" = Tr+ 1) 3,(5,%);39,(x,~y)
46 | (2 + 2+ 22+ D@+ 42* + 42+ 8) 5 (3 g>.23 @ — )
(z° + 52° + 142" + 252° + 282° + 20z + 8) gy T e/ e Y

9 <x+1 _ 4y )

30| @ +zr—DE* +ar—1D@'+2P+22" =2+ 1) Nr— 10— 1)?

_1 vy, _
5, (=2 )i 15, @ =9

27 V-1 .- (@
where ¢ = ¢ "  and the coefficients s, are

rational numbers. By the assumption of the
hyperellipticity, we may write a defining equa-
tion of X,(N) of the type

(2.1) y' = flx),

where f is a polynomial over Q. We put x =
h,(2) 4
G~ 9
map from X,(N) to the projective line of degree

two (cf. [7]). Now we put y = h%z) Z_; -
1

+ - - -. Then x defines a covering

¢~ “*Y + -+ .. Then z and y satisfy an equation
of the form (2.1), which can be viewed as a defin-
ing equation of X,(N), and we can determine re-
cursively the coefficients of f(x) by observing
the Fourier expansions of x and y.

Denote by Q (X, (N)) the function field of
X, (V) defined over Q. From the action of w, on
S, (I, (N)), we explicitly describe the action of
wF on the generators x and y of Q(X,(N)). To
construct families of Q-curves defined over num-
ber fields with degree 4 and 8, we consider the
case where the level N is a composite number,
namely

N = 22, 26, 30, 33, 35, 39 and 46.
Then we obtain the following result:

Proposition 2.1. A defining equation of
X,(N) and the action of w} on x and y are given
as in Table 1.

Using this result, we find an expression of

the covering map J in terms of x and y; For a
positive integer M which gives the hyperelliptic
involution wy,, i.e. wiir = x and wiy = — y, we
L_’ In

put j, = wij. Then j+j, and are

wi-invariant, so they are rational functions of z,
which are determined explicitly by observing the
pole divisors and the values at the cusps of x, v,
J and j,, and also by comparing the Fourier ex-
pansions. Since the size of the expression is
rather large, we shall give the covering map j
only for N = 22 and 30 in Table II.

3. Results. Next we consider a parameter-
ization of the Q-rational points on X (N) by
using the function x of Q(X,(IN)). We define an
element ¢ of Q(X,(N)) by a ‘trace’

(3.2) t=kN~d%:Vw;"(x),

where k, is a rational constant.

Lemma 3.1. If k,, # 0, then t parameterizes
the Q-rational points on XF(N).

Proof. We see that the function field Q (X,
(N)) of X,(N) is a (2,"**, 2)-extension of degree
2" over Q(X¥(N)), since the Galois group of the
extension is generated by the set of the auto-
morphisms {w¥|d| N} . Since the pole divisor

(), of x is equal to y— 1 o0 + w,(y— 1 o), it
follows that

(1) =5 Z0,((2).) = S, (/=1 ).
d|N dIN
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Table II. Data on parameterization of X (V)
N | ky z(7) y()
1
22| 4 i —1 ((27 —DFFT + @r+ D= 1‘)J1673 ¥ 487° + 447 + 13
1
26| r+4Jr—1 ((2r —Dyr+ 1+ Qr+ Dvr— 1)/4r3 — 167 +5r—1
33 ;1; r+Jr’ =3 (272—34—27\/;'2— 3)/(2r+ 1) (87° + 287 + 387 + 17)
35 % r+ i +1 <272+1+2r/rz+1>/(27+ 1) (87° — 207% + 67 — 19)
39 % r4Jrr—1 (27'2—1+27\/7’2—1>«/(47'2—14r+ 9) (47% + 27 — 3)
1
46 | 4 =2 <r(21’2 — 3+ @1/ -2 )
J@®7° + 207° + 87 + 1) (87° + 20+ + 167 + 5)
30 % r+yrt—1 2/@r + 1D @r + 5) ((Srz —5)r+ B+ 4r—2)YrP —r
—Jr+r+yrt—r + (=8 +ar+ 2/ +r+ (— 87+ 1)Yrt — 1)

Clearly ¢ is a non-constant rational function and
[QX,(N)): Q)] = deg((t).) = 2" There-
fore ¢ generates Q (X (N)) over Q. This com-
pletes the proof. ]

Conversely, we parameterize the points on
X, (N) which are Q-rational points on Xg* (N)
by considering the fibre of the convering map X,
(N) = X (N), xI— t. We specialize the func-
tion £ by a rational number 7. Then we obtain the
following result:

Proposition 3.2. Let ky, x(#) and y(r) be as
in Table Il . Then the point P, = (x(r), y(r)) on
X, (N) is a wunique point of the fibre of the
Q-rational point represented by v on X;F (N) up to
conjugacy.

Proof. From Proposition 2.1 and Lemma
3.1, we can check that P, is one of the points on
the modular curve X, (IN) which belong to the
fibre of the point represented by 7 on X (V).
This completes the proof of the proposition. O

Let K, be the extension over Q generated by
x(7) and y(r). Then we remark that K, is a (2,

.., 2)-extension which is defined independently
of the choice of P, and there exist infinitely
many rational numbers 7 such that [K,: Q] = 2"
by Hilbert’s irreducibility theorem. We put j, =
jx(, y(»)) and define an elliptic curve E, with
j-invariant j, by

v'+yv=x° if j, = 0,
Y'=Xx+Xx if j, = 1728,
E,I 2 —_ v _ 36 _ 1
Yo+ XY=X"— T 1758%X ~ = 1728
otherwise.

Our main result is the following:

Theorem 3.3.  For any rational number v, E,
is a Q-curve of degree N defined over K,. Moreover
every non-CM Q-curve of degree N is isogenous to
E, over Q.

Proof. We use the following result of Elkies
[1]: any elliptic curve corresponding to the
Q-rational point of XF(N) is a Q-curve of de-
gree N, and conversely any non-CM Q-curve of
degree N corresponds to a Q-rational point of
X#(N). Therefore the assertion is clear. ]

Remark 3.4. In the case where N is a
prime number, we can also construct a similar
family of Q-curves of degree N over quadratic
fields.

Our families have the following interesting
application:

Remark 3.5. In the case N = 22, we can
prove the following claim using Theorem C in [4]:
If the denominator of 7 is prime to 11 and 7 is con-
gruence to meither 1 nor 9 modulo 11, then the
elliptic curve E, is a modular Q-curve defined over
K,.

The proof will be given in another paper ([6]).
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Table M. Data on j (N = 22, 30)

N =22

i= (A(x) + B@)y)/(2z2?)

A(x)

22+ 2227 +11-1927 + 2°%11-132% + 2"11-2327

+2-11-4432% + 2°11-232% + 2"11-132*° + 2°11-192%

+ 2°112™ + 2"2% + 2327 + 2'°32™ + 2'77-232"

+ 2%11-23-472" + 2™11-26632" + 2°°3-11-55912"

+ 2'11-11895532"° + 2%11-401-6132"° + 2%5-11-125899x™

+ 2%11-107-151-3172"° + 2%3-11-337-2081z"" + 2%°31050451z"!
+ 2%3-7-11-13-455872" + 2°°11-13-41-3312° + 2%3-11-53-8272°
+ 2%11-3201072" + 2%*11-393412° + 2*°11153592°

+ 2%°11-9283z" + 2*°3%11-292° + 2"11-412% + 2*112 + 2

B(x)

@+ D@+2)@+4)@*+16)(@*+ 3z + 4)(x* + 42 + 8)

(x* + 6x + 4) (x* — 82% + 162 + 16) (x° + 42° + 162 + 16)
(x® — 162 — 32) (z* — 42> + 82 + 322 + 64)
(x® + 42° + 162* + 962° + 3202% + 5122 + 256)

ji= (Ax) + Bx)y)/Qx — 1D 2 (@ + 1))

60

x

— 52% — 302> + 2352° + 25z — 3726z + 7620z

+ 20940z% — 962552 + 21785z + 4739422 — 695985z
— 1002775z*° + 3161780z + 419176x* — 8205664x*°

+ 2472933z* + 36683843x*° + 418878642z *° + 4934156855z
+ 330209665252 + 139304348910z>° + 392406277628z

+ 7386155067002 + 8538576800852 + 358521497865z °°
— 558814702826x> — 1010196638005z*° — 481353378819z %
+ 2972553872242 + 372811349680x>° — 40731416160z’

— 78597010813z + 911861204412 + 769906811102

— 58178746527z — 1075578760852 + 153414048430z

— 167568580740z + 184073373604z>" — 1834060389412
+ 156351681587z — 109878375758z + 66498621453z

— 35422847525z + 162507130122"° — 6333882520z

+ 2042556352z — 541480745z + 131915465z

— 32472234x" + 72205412° — 13787852° + 267314x"

— 73404x° + 275242° — 8825x* + 1963x° — 2862 + 252 — 1

B(x)

(x

Pt -1+ 22 -1DE+ 2+ -1

@+ +3x2-1DE+32 -+ D@ +62°+ 1)

(' + 42’ — 1) (® + 52* + 162° — 52 — 1)

(® — 42° + 52* + 242° — 52 —4x — 1)

(x® — 22° + 72* + 122° + 232° — 102 + 1)

(x® — 42" — 42° + 62° + 382" — 282° + 282" — 42 + 1)

(2° — 52° — 42" + 242° + 622° + 142" — 42® — 322"+ 9x — 1)

Similar results can be obtained for N = 33 and %(9982696912817251292602665401196304704

46. — 40754189488135321090109133597561154561/6

4. Examples All the calculations in the + 1853740279115963052151887869295541248,/29
following were done by a program with GNU C — 756786299924789576937842692427292672/174 ).
and PARI-library, ver. 1.39. And the quadratic twist E of E, by

Example. 4.1. Let N =22 and = 11/5. _ 1248019557557
Then K, = Q /6, V29 ) has class number one. B = 1585084727553 2 V6
The elliptic curve E, has j-invariant 826800325581

— 989865700341y29 + 5 V174
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has the following global minimal model :
E:=2'+ (9+%¢6+% 174 )"
+ (— 383506419653 — 1565345065976
+ 71201118525y29 + 29073539873y/174)x
— 182798829223792711
— 74627160360067580v6
+ 33944822557919841y/29
+ 13857943481193026/174 .
Then E has discriminant
A(E) = 770987498697389702212257965120
+ 314754328312196256240261626880+/6
— 143168784300891113577113736960+/29
— 58448411438624093585994387840y/174,
(A(E) = v;"v3 (pg) ™ (p)- (5%,
and conductor

cond(E) = p,ps* (pg) - (py) - (pg7) = 2°:5,
where p,=(—2++/6 ), p, = <%+x/§+%
@) and Gal(X,/Q) = <o, t|lo’°="=1). E

is a modular Q-curve from Remark 3.5.
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