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1. Introduction. Let s be a complex vari-
able, & and A real parameters with a > 0. Let
I'(s) be the gamma-function and (s), = I'(s +
n)/I (s) for any integer # denote Pochhammer’s
symbol. The zeta-function

1.1) ¢4, a,s) = i_o: M+ ) Res>1)

was first introduced and studied by Lerch [10]
and Lipschitz [11]. For 2 € R\ Z it is continued
to an entire function over the s-plane, while if
A € Z it reduces to the Hurwitz zeta-function
C(s, @). Note that {(s, 1) = {(s) is the Riemann
zeta-function.

It is the main aim of the present paper to
study power series and asymptotic series for the
Lerch zeta-function ¢ (A, &, s) in the second pa-
rameter (see (1.6) and (2.2) below), based on
Mellin-Barnes type of integral formulae. Two ap-
plications of our main result will also be pre-
sented. For that purpose we extend the domain of
the second parameter as follows. Let w be a real
number fixed arbitrarily with — 7/2 < w < /2,
and S, denote the sectorial domain — 7#/2 +
w < arg z < w/2 + w. First for any parameter 2z
in S,, the analytic continuation of ¢(2, z, s) over
the s-plane is given by the formula

1 e—zwws—l
(1.2) ¢Q, 2z, s) = - —— dw,
¢ F(S) (ez is 1) _Ll _ ezn A

where € is the contour which starts from infin-
ity, proceeds along the real axis to a small posi-
tive 0, rounds the origin counter-clockwise, and
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returns to infinity along the real axis; arg w
varies from O to 27 round %. The expression on
the right-hand side of (1.2) shows that ¢ (4, z, s)
is also an analytic function of z in S, Next if 2z
is in the intersection of S, and S,, then the con-
tour € can be rotated around the origin by an
angle — w without altering the value of the in-
tegral. The resulting formula provides the analy-
tic continuation of ¢ (4, z, s) over the s-plane,
for any z in S,. This operation shows that the
domain of z in ¢ (4, 2z, s) can be extended to the
whole sector | arg z| < 7. When 0 < 2 <1 and
0<a<=1, it follows from (1.2) the functional
equation (cf. Erdélyi et al [6], p. 26 and p. 29])
(1.3) ¢, a, s)
_ r'd-s [e%ﬂi(l—s) i QI (1 4 ayse
@n)'™ 1=0
+ e%m’(s—l) Z“’:, D (g 'DH] Re's < 0),
1=0

where the prime on the latter summation symbol
indicates that the term corresponding to I = 0 is
to be omitted if A = 1.

The present investigation was motivated by
the following results (1.4), (1.5) and (1.6), for
which we give a brief overview before starting
our discussion. It is classically known that the
asymptotic expansion

N, NS 1.
(1.4) {_:ln ~ {(s) — s—1 +§N

> By —s—2k+1

- kzz:l (Zk)!(s)zk-—lN ,

as N— + oo, holds for all s # 1, where B, (k
> 0) is the k-th Bernoulli number. Berndt (4, p.
150] attributed this formula to Ramanujan. Next
let ¥(a, c; z) denote the solution of Kummer’s
confluent hypergeometric differential equation
zu” + (¢ — 2)u’ — au = 0 satisfying ¥(a, c; 2)
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~ 2z % for Rea > 0, as z— oo through |argz|
< 3n/2 (cf. [6, p. 248 and p. 255]). Ueno and
Nishizawa [13] recently introduced, in conjunc-
tion with quantum groups, a g-analogue of the
Hurwitz zeta-function {(s, z: ¢), and studied its
analytic nature. They proved the formula

l—s -
1 2 -1
(1.5) ((s, 2 = — + 52 2m 1211
X A{UQ,1—s; —27milz) — VA, 1 —s; 27milz)}
for |argz| < m/2 and any s # 1, 2, , which

provides a basis for their derivation of various
properties of {(s, z: q). Lastly the power series
expansion

(1.6) ¢, a + 2, 5)
=5 VO st (el < w
k=0 .

was established and studied by Klusch [9], who
further gave various interesting applications of
(1.6).

The formulae (1.4) and (1.5) can in fact be
viewed as special cases of a more general asymp-
totic series for { (s, @ + z) in the descending
order of 2. We shall present this asymptotic
series in a more general form (see (2.2) of
Theorem 1). Furthermore, a unified treatment of
the formulae (1.6) and (2.2) is possible, based on
the use of the Mellin-Barnes type of integral
(2.6) below. This aspect will be discussed after
the proof of Theorem 1.

In the next section we shall state our main
result and give a sketch of the proof. Two ap-
plications of our main result will be presented in
the last section. The detailed version of the
proofs and further investigations will appear in
forthcoming papers.

2. Main result. Let x and y be complex
variables. Apostol [1] introduced the sequence of
functions B,(x, y) (k = 0) defined by the Taylor
series expansion

zz © B ,
(2.1) 2’ _ 5Bz u)
ye — 1 k=0

near z = 0. The function B, (x, y), which coin-
cides with the usual Bernoulli polynomial B,(x)
if y =1, is a polynomial in x of degree at most k
with coefficients in Q(y).

Our main result can be stated as

Theorem 1. Let ¢ (1) be equal to 0 or 1
according as A & Z or A € Z. Then for any integer
K >0 and any parameter z in the sector | arg z|
< 7, the formula
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(2.2) ¢l atz )= 5( )lzl
K-1 1 k+1 y o
- Z Ek +)1)' Bii(a, ¢ (9,27 + p4(2; 4, @, 9)
holds in the region Re s > — K, where B, (a, ¢™)

(k = 0) is defined by (2.1). Heve px(z; A, «, S) is
the remainder term satisfying the estimate

(2.3) 0x(z; A, @, s) = 0(lz] %),

through |argz| < m — 6 with any
small 0 > 0, where the O-constant depends on K,
s, A, a and 0, In particular when 0 < A < 1,0
<a<1and K =1 the expression

1-s-K
(2.4) pgz; 4, a,8 =

as Z— oo

(s) gz
em*
) X 1.
X { S+ A, 2 - K =5 2n(+ Dze 7
1=0
+ (- l)Ki,ezma(m—x)(l f1- )—K
=0 XUL,2—K—s;2r(0+1 - /l)zezm) ]

holds for | arg z| < m, in the region Re s > — K,
wheve the prime has the same meaning as in (1.3).
Remark. When A € Z, the case s =1 of
Theorem 1 remains valid if it is regarded as the
limiting case s— 1.
Sketch of the proof.
> 1. Then

25) ¢4, a+z, ) =

Suppose first that Re s

S+ a+ 2”0

n=0
for > 0 and any z with | argz| < 7. A key to
the following derivation is the Mellin transform
m+a+27"°
I'(— wI(s + w)
I'(s)
where b is a constant fixed with 1 — Res < b
< 0, and (b) denotes the vertical straight line
from b — 190 to b + ioo. Substituting this into
each term on the right-hand side of (2.5), and
changing the order of summation and integration,
we obtain

—S—w w
= oril,, (n+ ) "2dw,

26) ¢4, a+ 2z, )
B 2}”. (b)F(_ w}g()s = w>¢(2’ a, s+ wz'dw.

Let K be any nonnegative integer, and by a
constant fixed with —Res — K< b, < —Res
— K+ 1. We move the path of integration in
(2.6) from (b) to (by), passing over the poles at
w=1—s—k((k=0,1, , K). Noting the
identities ¢ (X, a, — k) = — B,,, (@, &™) /(k + 1)
for k=0,1, (cf. [1, p. 164]), and the fact

2" = lz|Rew St 2 “, we can prove the asympto-
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tic series (2.2), together with the error estimate
(2.3). The expression (2.4) follows by applying
the functional equation (1.3) and a Mellin-Barnes
formula for ¥(a, c; 2) (cf. [6, p. 256)). UJ

We now return to the consideration of the
results (1.4)-(1.6). Theorem 1 with A=1, a =
1, z= N and K = + o implies (1.4), since the
relation X n° = {(s) — { (s, N+ 1) holds.
Also the formula (1.5) is a special case A =1, «
=1 and K =1 of Theorem 1, since {(s, z) =
z "+ C(s, 1+ z) holds. Moreover, the formula
(1.6) can be derived by moving the path of in-
tegration in (2.6) to the right, and collecting the
residues of the poles at w=k(k=0,1,...).
The special case A =1 and & = 1 of this argu-
ment has been given by the author [7{[8].

3. Application. In this section we present
two applications of Theorem 1.

For the first application we
well-known relation

r 0
log\[é—z;[)- = 55605, 2)

recall the

=0

for |argz| < m (cf. [6, p. 26]). To pursue this
direction further, Deninger [5] introduced and
studied the function

R(z) = — %C(s, 2)
0s

for | arg z| < 7. This led him to important arith-
metical applications which include closed evalua-
tions of L(1, x) and L' (1, x) (L(s, x) denotes
the Dirichlet L-function) and the analogue of
Chowla and Selberg’s formula for real quadratic
fields. Once and twice differentiations of both
sides of our formula (2.2) imply

Corollary 1. For any integer K = 1 and any
fixed ¢ > 0, the formula

I F(z-l—a’)_( 4 _l)l _

og———————m = szrl a— 5 |logz—z
K-1 (—
+'5 e Dl o el
holds, as z— oo through |argz| < m — 0 with
any small 0 > 0, where the O-constant depends on
K, o and 0.

This generalized Stirling’s formula was ori-
ginally established by Barnes [2, p. 121] in a
slightly different manner.

Corollary 2. For any integer K = 1 and any
fixed o > 0, the formula

R+ a) = (z-l-a—%)logzz— 2zlog z + 2z

s=0
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k1 (= DB, (@) _, k=11
PR TR I (logz - EJ)
+ 0(z " log 2|)

holds, as z—> oo through |argz| < m — & with
any small 0 > 0, where the O-constant depends on
K, o and 0.

This gives a generalization of Deninger’s
asymptotic series for R(z) (see [5, p. 178]), since
the relation R(z + 1) = log”® z + R(2) holds.

We proceed to the second application. Let %
and v be complex variables and w a positive real
parameter. Matsumoto [12] introduced a double
zeta-function of the form
3.1) &, v; a, w)

= i i(m +a)“m+ a+ nw)™”’

(Reu>1,Rev>1),
for the purpose of obtaining a better understand-
ing of classical Barnes’ double zeta-function {,(v;
@, w) (cf. [3]), which is connected with (3.1) by
the relation §, (v; a, ) = { (v, a) + &, (0,
v; a, w) for Rev > 2. He derived an asymptotic
expansion for iz(u, v; a, ) in the descending
order of w, which led him to obtain asymptotic
series for Barnes’ double zeta, double gamma,
and Hecke L-functions. Let g, v and 8 be real
parameters with 8 > 0. Suggested by (3.1), we
introduce here a double Lerch zeta-function of
the form

b, v, a0, Biu, v) = X X

m=0 n=0

Xm+a)“m+n+a+p”
(Reu>1,Rev >1).
We transform this by substituting
m+a) “m+n+a+p”
- 5%[7 (c)['( S}‘{;)()v . S) (m + a) —u_V_S(n + B)Sds
(¢ is a constant fixed with —Rev < ¢ < — 1)
into each term of the double series. Changing the
order of summation and integration, we obtain
&, v, a, B; u, v)
1 I'(—s)Ir'v+s)
T 2midy, I'(v)
X ¢, a, u+ v+ s)gp(v, B, — s)ds.
Applying Theorem 1 to the inner Lerch zeta-
functions ¢ (u, a, u + v+ s) and ¢ (v, B, — s)
in this integral expression, we can prove
Theorem 2. For any integer K = 0, any posi-
tive @ and B, and any real (1t and v, the formula
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(3.2) ¢,(p, v, a+x,B;u,v)

1-u ° —u
=
x j; ¢y, B+ tx, v)dr

— Kil Bk+l(av ezmu)x—u-k
i (k+ D!

+ O(xl—Re(u+v)—K)

holds, as x— + ©0 | in the region Reu > 1 and

Rev > 1, where the O-constant depends on u, v,

U, v, a and B.

Theorem 3. For any integer K = 0, any posi-
five & and B, and any real i and v, the formula
(3.3) ¢2(ﬂ, v, a, IB +y;u, v)

e(Q)

— o i ZeZﬂ.'imu(m + a)-—u(m + a+ y)l—v
m=0

k-1(— 1)*B 1B, e ™) S amimu
TE T G e

X m+a) m+a+y "
+ O(y—-Rev—K)
holds, as y— + o in the region Reu > 1 and
Re v > 1, where the O-constant depends on u, v,
u, v, o and B.
Noting that

—u—k ak —u
{r %y, B+ tx, v)} )

ak
—At™¢(v, B + 1z, v))
ot ™=

1

k 0
=¢eQQ) f~ l)k(u +ov— l)k 1—u—v—k
= & v — 1 X
4 O(x—Re(u+v)—k),

and
Z eZIimtl(m _|_ a)—u(m _|_ o _"_ y)—v—k

m=0
— ¢(#, a, u)y—v—k + O(y—Reu—k—l),
as r— 4+ oo and y— 4 oo, for k=0,1,...,
we see that the formulae (3.2) and (3.3) actually
give asymptotic expansions in the descending
order of x and y, respectively.
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