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1. Introduction. Let s be a complex vari- returns to infinity along the real axis; arg w
able, c and 2 real parameters with c > 0. Let varies from 0 to 2r round . The expression on
F(s) be the gamma-function and (s:) n F(s + the right-hand side of (1.2) shows that (2, z, s)
n)/F(s) for any integer n denote Pochhammer’s is also an analytic function of z in SO Next if z
symbol. The zeta-function is in the intersection of SO and S, then the con-

(1.1) (,, a, s)- e2in(n + a) -s (Re s > 1)
tour can be rotated around the origin by an

n=0 angle --to without altering the value of the in-
was first introduced and studied by Lerch [10] tegral. The resulting formula provides the analy-
and Lipschitz [1 1]. For 2 R\Z it is continued tic continuation of (2, z, s) over the s-plane,
to an entire function over the s-plane, while if for any z in S. This operation shows that the
2 Z it reduces to the Hurwitz zeta-function domain of z in (2, z, s) can be extended to the
(s, c). Note that (s, 1) (s) is the Riemann whole sector arg z] < r. When 0 < 2 <-- 1 and
zeta-function. 0 < <--1, it follows from (1.2) the functional

It is the main aim of the present paper to equation (cf. Erd61yi et al. [6], p. 26 and p. 29])
study power series and asymptotic series for the (1.3) (/, a, s)
Lerch zeta-function (2, o, s) in the second pa- Y(1 s) 1/2i(1-s) -2/+) s-1

rameter (see (1.6) and (2.2) below), based on (2r)_s
e --0Ye (l+ 2)

(Re s < 0),Mellin-Barnes type of integral formulae. Two ap- + e1/2ils-1) ’ei"lt+l-) (I+ 1- 2)s-
plications of our main result will also be pre- =0

sented. For that purpose we extend the domain of where the prime on the latter summation symbol
the second parameter as follows. Let to be a real indicates that the term corresponding to l-- 0 is
number fixed arbitrarily with r/2 < to < r/2, to be omitted if 2 1.
and S denote the sectorial domain --r/2 + The present investigation was motivated by
to < argz < r/2 + to. First for any parameter z the following results (1.4), (1.5) and (1.6), for
in S the analytic continuation of (/, z, s) over which we give a brief overview before starting

the s-plane is given by the formula
-zw s-11 (" e w

(1.2) (2 z, s)
F(s)(e2’is-1) 1 e

2ri-w dw,

where is the contour which starts from infin-
ity, proceeds along the real axis to a small posi-
tive c, rounds the origin counter-clockwise, and

our discussion. It is classically known that the
asymptotic expansion

N

(1.4) E n-s (s)
=1 s--1 N-s

B2k -s-2k+l2 (2k) (s) 2-1N
k=l

as N--* + oo, holds for all s =/= 1, where B (k
1991 Mathemtics Subject Classification, Primary --> 0) is the k-th Bernoulli number. Berndt [4, p.

11M35; Secondary llM41. 150] attributed this formula to Ramanujan. Next
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Z for Re a > 0, as z-- co through arg z
< 3zr/2 (cf. [6, p. 248 and p. 255]). Ueno and
Nishizawa [13] recently introduced, in conjunc-
tion with quantum groups, a q-analogue of the
Hurwitz zeta-function (s, z: q), and studied its
analytic nature. They proved the formula

1-s -s

(1 5) (s z)
z 1 SZ

s- +-z-s +--f -1=1

x {(1, 1 s; 2ilz) gffl, 1 s; 2zcilz)}
for [arg z[ K rc/2 and any s 4: 1, 2 which
provides a basis for their derivation of various
properties of (s, z:q). Lastly the power series

expansion
(1.6) (, c + z, s)

E
(- 1)(s)

:0 f (, a, s + )z (I z < )
was established and studied by Klusch [9], who
further gave various interesting applications of
(1.6).

The formulae (1.4) and (1.5) can in fact be
viewed as special cases of a more general asymp-
totic series for (s, cr-b-z) in the descending
order of z. We shall present this asymptotic
series in a more general form (see (2.2) of
Theorem 1). Furthermore, a unified treatment of
the formulae (1.6) and (2.2) is possible, based on

the use of the Mellin-Barnes type of integral

(2.6) below. This aspect will be discussed after
the proof of Theorem 1.

In the next section we shall state our main

result and give a sketch of the proof. Two ap-
plications of our main result will be presented in
the last section. The detailed version of the
proofs and further investigations will appear in
forthcoming papers.. Main result. Let w and y be complex
variables. Apostol [1] introduced the sequence of
functions B(w, y) (k >_ 0) defined by the Taylor
series expansion

ooB(xyZe E k k
(2.1) k z

ye 1 =o

near z- 0. The function B (x, y), which coin-

cides with the usual Bernoulli polynomial B(x)
if y 1, is a polynomial in x of degree at most k
with coefficients in Q(y).

Our main result can be stated as
Theorem 1. Let ( be equal to 0 or 1

according as , Z or , Z. Then for any integer

K 0 and any parameter z in the sector [arg z
re, the formula

() 1-S
(2.2) (2, cr + z, s) s---A-i-1z

KI (-- 1) TM ) -s-+ B+ (a e (s)z + p(z’2, a, s)
--0 (k + 1)!

holds in the region Re s K, where B (ol, e)
(k >_ O) is defined by (2.1). Here pn(z ,, or, s) is

the remainder term satisfying the estimate

(2.3) p(z , , s) O ([zl--),
as z-- co through ]argzl <-- 7c-- 6 with any
small 0, where the O-constant depends on K,
s, 2, cr and , In particular when 0 2 <-- 1, 0

cr <-- 1 and K >_ 1 the expression

(2.4) pK(Z , 0{, S)
(S)KZI-s-K

(27ri)
-27Ci1(/+2) -Kx Ee (I+) (1,2-K-s;2(l+)ze-1/2i)

1=0

+ (- 1)Y’e2i/+1-/(I + 1
ze1/2)I=0 g(1,2-K-s;2(l+l-

holds for arg z < zr, in the region Re s > K,
where the prime has the same meaning as in (1.3).

Remark. When , Z, the case s--1 of
Theorem 1 remains valid if it is regarded as the
limiting case s-- 1.

Sketch of the proof. Suppose first that Re s
> 1. Then

(2.5) b(2, a/z, s) e2nx(n/a/z) -s

n=0

for cx > 0 and any z with ]arg z[ < zr. A key to
the following derivation is the Mellin transform

(n + a + z) -s

1 fF(-w)F(s+w)27ri.,() F(s(n + a)-S-WzWdw’

where b is a constant fixed with 1- Re s < b
< 0, and (b)denotes the vertical straight line
from b- oo to b-t-ioo Substituting this into

each term on the right-hand side of (2.5), and
changing the order of summation and integration,
we obtain

(2.6) b(2, cr + z, s)
1 f F(-- w)F(s + w)

2ci...() F(s) (2, a, s + w)zWdw.

Let K be any nonnegative integer, and b/ a
constant fixed with Re s K b: Re s
--K / 1. We move the path of integration in

(2.6) from (b) to (b/), passing over the poles at
w= 1-- s-- k(k= 0, 1 K). Noting the
identities (2, a, k) B+ (a, e"’)/(k + 1)
for k O, 1, (cf. [1, p. 164]), and the fact
[zW[_ [ZIReWe-argz Imw, we can prove the asympto-
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tic series (2.2), together with the error estimate

(2.3). The expression (2.4) follows by applying
the functional equation (1.3) and a Mellin-Barnes
formula for (a, c; z) (of. [6, p. 256]).

We now return to the consideration of the
results (1.4)-(1.6). Theorem 1 with 2- 1, c-
1, z-N and K- + c implies (1.4), since the

N -s
relation n=n (s) (s, N nu 1 holds.
Also the formula (1.5) is a special case

1 and K- 1 of Theorem 1, since (s, z)
--Sz -+- (s, 1 q- z) holds. Moreover, the formula

(1.6) can be derived by moving the path of in-
tegration in (2.6) to the right, and collecting the
residues of the poles at w--/c (k- 0, 1 ).
The special case /- 1 and c-- 1 of this argu-

ment has been given by the author [7][8].
3. Application. In this section we present

two applications of Theorem 1.
For the first application we recall the

well-known relation
F(z)

log (:- Os (s, z)
s=0

for [arg z] < 7r (cf. [6, p. 26]). To pursue this

direction further, Deninger [5] introduced and
studied the function

R(z) (s, z)
os s=0

for larg z[ < 7c. This led him to important arith-

metical applications which include closed evalua-
tions of L (1, Z) and L’ (1, X) (L (s, X) denotes
the Dirichlet L-function) and the analogue of
Chowla and Selberg’s formula for real quadratic
fields. Once and twice differentiations of both
sides of our formula (2.2) imply

Corollary 1. For any integer K >_ 1 and any

fixed o > O, the formula
logF(Z + c) ( 1)v/27c z/c--- logz-- z

B+ (a)K 1) TM

k=i k(k + 1) z ++
holds, as z--+ co through arg z <-- 7r ( with

any small O, where the O-constant depends on

K, o and (.

This generalized Stirling’s formula was ori-

ginally established by Barnes [2, p. 121] in a

slightly different manner.

Corollary 2. [’or any integer K >- 1 and any

fixed o > O, the formula
R(z+o)- z+a- logz-2zlogz+2z

-, (- +’r ( -1){g -)- -z log z Z--
k=l h=l h

-K+ O([z logz[)
holds, as z through arg z] < 6 with

any small 6 > 0, where the O-constant depends on

K, and6.
This gives a generalization of Deninger’s

asymptotic series for R(z) (see [5, p. 178]), since

the relation R(z + 1) log z + R(z) holds.
We proceed to the second application. Let u

and v be complex variables and a positive real
parameter. Matsumoto [12] introduced a double
zeta-function of the form
(a.1) (u, v; a, )

E(m+a)-u(m+a+nw)
m=0 n=l

(Reu> 1, Rev > 1),
for the purpose of obtaining a better understand-
ing of classical Barnes’ double zeta-function (v;, )(cf. [3]), which is connected with (3.1) by
the relation (v;a, w) (v, a) + (0,
v; , w) for Re v > 2. He derived an asymptotic

expansion for a (u, v , ) in the descending

order of o), which led him to obtain asymptotic
series for Barnes’ double zeta, double gamma,

and Hecke L-functions. Let , and fl be real
parameters with fl > 0. Suggested by (3.1), we

introduce here a double Lerch zeta-function of
the form

(V, ,, a, 5 u, v) E E e
m=O n=0

x (m+a)-U(m+n+a+
(Reu > 1, Rev > 1).

We transform this by substituting
(m + a) (m + n + a + fl)

1 F(- s)F(v + s)
2i() F(v) (m + a)-u--(n + fl)Sds

(c is a constant fixed with --Rev c - 1)
into each term of the double series. Changing the

order of summation and integration, we obtain

(V, ,, a, ; u, v)

(, a, u + v + s)(,, fl, s)ds.
Applying Theorem 1 to the inner Lerch zeta-
functions (, , u+ v+s) and (,fl, --s)
in this integral expression, we can prove

Theorem 2. For any integer K 0, any posi-
tive and fl, and any real and , the formula
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(/, v, a + z, u, v)
1- -gx r ( + rx, v)dr

K-1B (, ei)
1)’. -x

+ O(X 1-Re(u+v)-K)
holds, as x , in the region Re u 1 and
Re y 1, where the O-constant depends on u, y,

Theorem 3. For any integer K O, any posi-
tive and fl, and any real and , the formula
(3.3) (, w, a, fl+ y; u, v)

s() ev-- 1 (m+ a) (m+a+y)l-
m=0

K-l(-- 1)B+(, e-i)
E (k+ 1) (v)kEe
k=O m=O

x (m + )-(m + + y)--
+ O(y--)

holds, as y + , in the region Re u > 1 and
Re v > 1, where the O-constant depends on u, ,, , andfl.

Noting that

-"-X {T-u

Or
(,, fl + rx v) }

=o
(- 1)(u + v- 1) _,_,_

s(2)
v- 1

+ O(x-("+)-),
and . erima (m + c) (m + o + y)-V-k

m=0
--v--k -Rev-k-1)(, a, u)y + O(y

as x--. + c and y--, + oo, for k= 0, 1
we see that the formulae (3.2) and (3.3) actually
give asymptotic expansions in the descending
order of x and y, respectively.
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